On the disconjugacy of a differential equation on a graph
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 31-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the problems of disconjugacy of fourth-order differential equations on a graph. We introduce the concept of critical disconjugacy. Critical disconjugacy allows us to generalize the notion of exact interval of disconjugacy in the classical theory. We give the definition of disconjugacy in terms of the properties of a special fundamental system of solutions of an equation on a graph. This definition introduces new features into the theory, but it preserves the basic properties of the one-dimensional theory.
@article{VMJ_2017_19_3_a3,
     author = {R. Ch. Kulaev},
     title = {On the disconjugacy of a differential equation on a graph},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--40},
     year = {2017},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a3/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
TI  - On the disconjugacy of a differential equation on a graph
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 31
EP  - 40
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a3/
LA  - ru
ID  - VMJ_2017_19_3_a3
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%T On the disconjugacy of a differential equation on a graph
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 31-40
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a3/
%G ru
%F VMJ_2017_19_3_a3
R. Ch. Kulaev. On the disconjugacy of a differential equation on a graph. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 31-40. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a3/

[1] Kulaev R. Ch., “Neostsillyatsiya uravneniya chetvertogo poryadka na grafe”, Mat. sb., 206:12 (2015), 79–118 | DOI | MR | Zbl

[2] Kulaev R. Ch., “K voprosu o neostsillyatsii uravneniya na grafe”, Dif. uravneniya, 50:11 (2014), 1563–1565 | DOI | MR | Zbl

[3] Kulaev R. Ch., “Printsip sravneniya dlya funktsii Grina kraevoi zadachi chetvertogo poryadka na grafe”, Ufim. mat. zhurn., 7:4 (2015), 99–108 | MR

[4] Kulaev R. Ch., “O svoistve neostsillyatsii uravneniya na grafe”, Sib. mat. zhurn., 57:1 (2016), 85–97 | MR | Zbl

[5] Levin A. Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_1(t)x^{(n-1)}+\ldots+p_n(t)x=0$”, Uspekhi mat. nauk, 24:2 (1969), 43–96 | MR

[6] Levin A. Yu., Stepanov G. D., “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka. I, II”, Sib. mat. zhurn., 17:3 (1976), 606–626 ; 4, 813–830 | MR | Zbl | Zbl

[7] Derr V. Ya., “Neostsillyatsiya reshenii differentsialnykh uravnenii”, Vestn. Udmurd. un-ta, 2009, no. 1, 46–89

[8] Teptin A. L., “K voprosu ob ostsillyatsionnosti spektra mnogotochechnoi kraevoi zadachi”, Izv. vuzov. Matematika, 1999, no. 4(443), 44–53 | Zbl

[9] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2007, 272 pp. | MR

[10] Pokornyi Yu. V., “O neostsillyatsii obyknovennykh differentsialnykh uravnenii i neravenstv na prostranstvennykh setyakh”, Dif. uravneniya, 37:5 (2001), 661–672 | MR

[11] Kulaev R. Ch., “Neobkhodimoe i dostatochnoe usloviya polozhitelnosti funktsii Grina dlya uravneniya chetvertogo poryadka na grafe”, Dif. uravneniya, 51:3 (2015), 302–316 | DOI | MR | Zbl

[12] Kulaev R. Ch., “O znake funktsii Grina kraevoi zadachi na grafe dlya uravneniya chetvertogo poryadka”, Vladikavk. mat. zhurn., 15:4 (2013), 19–29 | Zbl

[13] Pokornyi Yu. V., Bakhtina Zh. I., Zvereva M. B., Shabrov S. A., Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, Fizmatlit, M., 2009, 192 pp.

[14] Vladimirov A. A., “Zamechaniya o minorantakh laplasiana na geometricheskom grafe”, Mat. zametki, 98:3 (2015), 467–469 | DOI | MR | Zbl

[15] Xu G. Q., Mastorakis N. E., Differential Equations on Metric Graph, Wseas Press, 2010, 232 pp.

[16] Leugering G., Leugering E., Zuazua E., “On exact controllability of generic trees”, ESAIM: Proceedings, v. 8, 2000, 95–105 | DOI | MR | Zbl

[17] Kulaev R. Ch., “O razreshimosti kraevoi zadachi dlya uravneniya chetvertogo poryadka na grafe”, Dif. uravneniya, 50:1 (2014), 27–34 | DOI | MR | Zbl

[18] Kulaev R. Ch., “Kriterii polozhitelnosti funktsii Grina mnogotochechnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Dif. uravneniya, 51:2 (2015), 161–173 | DOI | MR | Zbl

[19] Borovskikh A. V., Lazarev K. P., “Fourth-order differential equations on geometric graphs”, J. Math. Sci., 119:6 (2004), 719–738 | DOI | MR | Zbl

[20] Borovskikh A. V., Mustafokulov R. O., Lazarev K. P., Pokornyi Yu. V., “Ob odnom klasse differentsialnykh uravnenii chetvertogo poryadka na prostranstvennoi seti”, Dokl. RAN, 345:6 (1995), 730–732 | MR | Zbl

[21] Pokornyi Yu. V., Mustafokulov R., “O polozhitelnosti funktsii Grina lineinykh kraevykh zadach dlya uravnenii chetvertogo poryadka na grafe”, Izv. vuzov. Matematika, 441:2 (1999), 75–82 | MR

[22] Kulaev R. Ch., “K voprosu ob ostsillyatsionnosti funktsii Grina razryvnoi kraevoi zadachi”, Mat. zametki, 100:3 (2016), 375–388 | DOI | MR