@article{VMJ_2017_19_3_a2,
author = {D. Ayaseh and A. Ranjbari},
title = {Order bornological locally convex lattice cones},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {21--30},
year = {2017},
volume = {19},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a2/}
}
D. Ayaseh; A. Ranjbari. Order bornological locally convex lattice cones. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 21-30. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a2/
[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, N. Y., 1985, xvi+367 pp. | Zbl
[2] Ayaseh D., Ranjbari A., “Bornological convergence in locally convex cones”, Mediterr. J. Math., 13:4 (2016), 1921–1931 | DOI | MR | Zbl
[3] Ayaseh D., Ranjbari A., “Bornological locally convex cones”, Le Matematiche, 69:2 (2014), 267–284 | MR | Zbl
[4] Ayaseh D., Ranjbari A., “Locally convex quotient lattice cones”, Math. Nachr., 287:10 (2014), 1083–1092 | DOI | MR | Zbl
[5] Keimel K., Roth W., Ordered Cones and Approximation, Lecture Notes in Math., 1517, Springer Verlag, Heidelberg–Berlin–N. Y., 1992 | DOI | MR | Zbl
[6] Ranjbari A., “Strict inductive limits in locally convex cones”, Positivity, 15:3 (2011), 465–471 | DOI | MR | Zbl
[7] Ranjbari A., Saiflu H., “Projective and inductive limits in locally convex cones”, J. Math. Anal. Appl., 332 (2007), 1097–1108 | DOI | MR | Zbl
[8] Robertson A. P., Robertson W., Topological Vector Spaces, Cambridge Tracts in Math., 53, Cambridge Univ. Press, Cambridge, 1964, viii+158 pp. | MR
[9] Roth W., “Locally convex quotient cones”, J. Convex Anal., 18:4 (2011), 903–913 | MR | Zbl
[10] Roth W., “locally convex lattice cones”, J. Convex Anal., 16:1 (2009), 1–8 | MR
[11] Roth W., Operator-Valued Measures and Integrals for Cone-Valued Functions, Lecture Notes in Math., 1964, Springer Verlag, Heidelberg–Berlin–N. Y., 2009 | MR | Zbl