Order bornological locally convex lattice cones
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 21-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce the concepts of $us$-lattice cones and order bornological locally convex lattice cones. In the special case of locally convex solid Riesz spaces, these concepts reduce to the known concepts of seminormed Riesz spaces and order bornological Riesz spaces, respectively. We define solid sets in locally convex cones and present some characterizations for order bornological locally convex lattice cones.
@article{VMJ_2017_19_3_a2,
     author = {D. Ayaseh and A. Ranjbari},
     title = {Order bornological locally convex lattice cones},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {21--30},
     year = {2017},
     volume = {19},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a2/}
}
TY  - JOUR
AU  - D. Ayaseh
AU  - A. Ranjbari
TI  - Order bornological locally convex lattice cones
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 21
EP  - 30
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a2/
LA  - en
ID  - VMJ_2017_19_3_a2
ER  - 
%0 Journal Article
%A D. Ayaseh
%A A. Ranjbari
%T Order bornological locally convex lattice cones
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 21-30
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a2/
%G en
%F VMJ_2017_19_3_a2
D. Ayaseh; A. Ranjbari. Order bornological locally convex lattice cones. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 21-30. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a2/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, N. Y., 1985, xvi+367 pp. | Zbl

[2] Ayaseh D., Ranjbari A., “Bornological convergence in locally convex cones”, Mediterr. J. Math., 13:4 (2016), 1921–1931 | DOI | MR | Zbl

[3] Ayaseh D., Ranjbari A., “Bornological locally convex cones”, Le Matematiche, 69:2 (2014), 267–284 | MR | Zbl

[4] Ayaseh D., Ranjbari A., “Locally convex quotient lattice cones”, Math. Nachr., 287:10 (2014), 1083–1092 | DOI | MR | Zbl

[5] Keimel K., Roth W., Ordered Cones and Approximation, Lecture Notes in Math., 1517, Springer Verlag, Heidelberg–Berlin–N. Y., 1992 | DOI | MR | Zbl

[6] Ranjbari A., “Strict inductive limits in locally convex cones”, Positivity, 15:3 (2011), 465–471 | DOI | MR | Zbl

[7] Ranjbari A., Saiflu H., “Projective and inductive limits in locally convex cones”, J. Math. Anal. Appl., 332 (2007), 1097–1108 | DOI | MR | Zbl

[8] Robertson A. P., Robertson W., Topological Vector Spaces, Cambridge Tracts in Math., 53, Cambridge Univ. Press, Cambridge, 1964, viii+158 pp. | MR

[9] Roth W., “Locally convex quotient cones”, J. Convex Anal., 18:4 (2011), 903–913 | MR | Zbl

[10] Roth W., “locally convex lattice cones”, J. Convex Anal., 16:1 (2009), 1–8 | MR

[11] Roth W., Operator-Valued Measures and Integrals for Cone-Valued Functions, Lecture Notes in Math., 1964, Springer Verlag, Heidelberg–Berlin–N. Y., 2009 | MR | Zbl