Singular integro-differential equations with Hilbert kernel and monotone nonlinearity
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 11-20
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper applying methods of trigonometric series we establish that the singular integro-differential operator with the Hilbert kernel $(Gu)(x)=-\frac{1}{2\pi}\int\nolimits_{-\pi}^{\pi} u'(s)\, \mathrm{ctg}\,\frac{s-x}{2}\,ds$ with the domain $D(G)=\{u(x):\, u(x)$ absolutely continuous with $u'(x)\in L_{p'}(-\pi,\pi)$ and $u(-\pi)=u(\pi)=0\}$, where $p'=p/(p-1)$, ${1$, is a strictly positive, symmetric and potential. Using this result and the method of maximal monotone operators, we investigate three different classes of nonlinear singular integro-differential equations with the Hilbert kernel, containing an arbitrary parameter, in the class of $2\pi$-periodic real functions. The solvability and uniqueness theorems, covering also the linear case, are established under transparent restrictions. In contrast to previous papers devoted to other classes of nonlinear singular integro-differential equations with the Cauchy kernel, this one is based on inverting of the superposition operator generating the nonlinearity in the equations considered, and on the proof of the coercivity of this inverse operator. The corollaries are given that illustrate the obtained results.
			
            
            
            
          
        
      @article{VMJ_2017_19_3_a1,
     author = {S. N. Askhabov},
     title = {Singular integro-differential equations with {Hilbert} kernel and monotone nonlinearity},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a1/}
}
                      
                      
                    TY - JOUR AU - S. N. Askhabov TI - Singular integro-differential equations with Hilbert kernel and monotone nonlinearity JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 11 EP - 20 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a1/ LA - ru ID - VMJ_2017_19_3_a1 ER -
S. N. Askhabov. Singular integro-differential equations with Hilbert kernel and monotone nonlinearity. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 11-20. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a1/
