, is a strictly positive, symmetric and potential. Using this result and the method of maximal monotone operators, we investigate three different classes of nonlinear singular integro-differential equations with the Hilbert kernel, containing an arbitrary parameter, in the class of $2\pi$-periodic real functions. The solvability and uniqueness theorems, covering also the linear case, are established under transparent restrictions. In contrast to previous papers devoted to other classes of nonlinear singular integro-differential equations with the Cauchy kernel, this one is based on inverting of the superposition operator generating the nonlinearity in the equations considered, and on the proof of the coercivity of this inverse operator. The corollaries are given that illustrate the obtained results.
@article{VMJ_2017_19_3_a1,
author = {S. N. Askhabov},
title = {Singular integro-differential equations with {Hilbert} kernel and monotone nonlinearity},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {11--20},
year = {2017},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a1/}
}
S. N. Askhabov. Singular integro-differential equations with Hilbert kernel and monotone nonlinearity. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 11-20. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a1/
[1] Askhabov S. N., Nelineinye singulyarnye integralnye uravneniya v prostranstvakh Lebega, Chechenskii gos. un-t, Groznyi, 2013, 136 pp.
[2] Askhabov S. N., “Primenenie metoda maksimalnykh monotonnykh operatorov k nelineinym singulyarnym integro-differentsialnym uravneniyam”, Vestn. Chechenskogo gos. un-ta, 2015, no. 1, 7–12
[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp.
[4] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp.
[5] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp.
[6] Zhikov V. V., “Monotonnyi operator”, Mat. entsiklopediya, v. 3, Sovetskaya entsiklopediya, M., 1982, 592 pp.
[7] Kogan Kh. M., “Ob odnom singulyarnom integro-differentsialnom uravnenii”, Uspekhi mat. nauk, 20:3(123) (1965), 243–244
[8] Kogan Kh. M., “Ob odnom singulyarnom integro-differentsialnom uravnenii”, Dif. uravneniya, 3:2 (1967), 278–293 | Zbl
[9] Magomedov G. M., “Metod monotonnosti v teorii nelineinykh singulyarnykh integralnykh i integro-differentsialnykh uravnenii”, Dif. uravneniya, 13:6 (1977), 1106–1112 | Zbl
[10] Wolfersdorf L. V., “Monotonicity methods for nonlinear singular integral and integro-differential equations”, J. Appl. Math. Mech., 63:6 (1983), 249–259 | MR | Zbl
[11] Schleiff M., “Untersuchungen einer linearen singularen integrodifferentialgleichung der tragflugeltheorie”, Wiss. Z. Univ. Halle. Math.-Nat. Reihe, 17 (1968), 981–1000 | MR | Zbl