Blum--Hanson ergodic theorem in a Banach lattices of sequences
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that a linear contraction $T$ on a Hilbert space has the so called Blum–Hanson property, i. e., that the weak convergence of the powers $T^n$ is equivalent to the strong convergence of Ĉesaro averages $\frac1{m+1}\sum_{n=0}^m T^{k_n}$ for any strictly increasing sequence $\{k_n\}$. A similar property is true for linear contractions on $l_p$-spaces ($1\le p\infty$), for linear contractions on $L^1$, or for positive linear contractions on $L^p$-spaces ($1 p\infty$). We prove that this property holds for any linear contractions on a separable $p$-convex Banach lattices of sequences.
@article{VMJ_2017_19_3_a0,
author = {A. N. Azizov and V. I. Chilin},
title = {Blum--Hanson ergodic theorem in a {Banach} lattices of sequences},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--10},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a0/}
}
A. N. Azizov; V. I. Chilin. Blum--Hanson ergodic theorem in a Banach lattices of sequences. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a0/