Blum--Hanson ergodic theorem in a Banach lattices of sequences
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that a linear contraction $T$ on a Hilbert space has the so called Blum–Hanson property, i. e., that the weak convergence of the powers $T^n$ is equivalent to the strong convergence of Ĉesaro averages $\frac1{m+1}\sum_{n=0}^m T^{k_n}$ for any strictly increasing sequence $\{k_n\}$. A similar property is true for linear contractions on $l_p$-spaces ($1\le p\infty$), for linear contractions on $L^1$, or for positive linear contractions on $L^p$-spaces ($1 p\infty$). We prove that this property holds for any linear contractions on a separable $p$-convex Banach lattices of sequences.
@article{VMJ_2017_19_3_a0,
     author = {A. N. Azizov and V. I. Chilin},
     title = {Blum--Hanson ergodic theorem in a  {Banach} lattices of sequences},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a0/}
}
TY  - JOUR
AU  - A. N. Azizov
AU  - V. I. Chilin
TI  - Blum--Hanson ergodic theorem in a  Banach lattices of sequences
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 3
EP  - 10
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a0/
LA  - ru
ID  - VMJ_2017_19_3_a0
ER  - 
%0 Journal Article
%A A. N. Azizov
%A V. I. Chilin
%T Blum--Hanson ergodic theorem in a  Banach lattices of sequences
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 3-10
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a0/
%G ru
%F VMJ_2017_19_3_a0
A. N. Azizov; V. I. Chilin. Blum--Hanson ergodic theorem in a  Banach lattices of sequences. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/VMJ_2017_19_3_a0/