A maximum principle for a loaded hyperbolic-parabolic equation
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 80-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the maximum principle for a loaded equation of hyperbolic-parabolic type with variable coefficients. The characteristic load term is given on the degenerate line. The obtained results generalize the maximum principle for hyperbolic-parabolic equations provided in T. D. Dzhuraev's monograph, and in the hyperbolic domain the well-known Agmon–Nirenberg–Protter principle.
@article{VMJ_2016_18_4_a8,
     author = {K. U. Khubiev},
     title = {A maximum principle for a loaded hyperbolic-parabolic equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {80--85},
     year = {2016},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/}
}
TY  - JOUR
AU  - K. U. Khubiev
TI  - A maximum principle for a loaded hyperbolic-parabolic equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 80
EP  - 85
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/
LA  - ru
ID  - VMJ_2016_18_4_a8
ER  - 
%0 Journal Article
%A K. U. Khubiev
%T A maximum principle for a loaded hyperbolic-parabolic equation
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 80-85
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/
%G ru
%F VMJ_2016_18_4_a8
K. U. Khubiev. A maximum principle for a loaded hyperbolic-parabolic equation. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 80-85. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/

[1] Nakhushev A. M., Nagruzhennye uravneniya i ikh prilozheniya, Nauka, M., 2012, 232 pp.

[2] Bitsadze A. V., “O nekotorykh zadachakh smeshannogo tipa”, Dokl. AN SSSR, 70:4 (1950), 561–565

[3] Sabitov K. B., “O printsipe maksimuma dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 24:11 (1988), 1967–1976 | Zbl

[4] Nakhushev A. M., “K teorii kraevykh zadach dlya nagruzhennykh integralnykh uravnenii”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. akademii nauk, 16:3 (2014), 30–34

[5] Khubiev K. U., “O printsipe ekstremuma dlya nagruzhennykh uravnenii”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. akademii nauk, 16:3 (2014), 47–50

[6] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp.

[7] Khubiev K. U., “O printsipe maksimuma dlya kharakteristicheski nagruzhennogo uravneniya giperbolicheskogo tipa”, Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki, Materialy III Mezhdunar. Rossiisko-Kazakhskogo simp. (Nalchik–Terskol, 3–7 dekabrya 2014 g.), 219–221

[8] Dzhuraev T. D., Sopuev A., Mamazhanov M., Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, Fan, Tashkent, 1986, 220 pp. | MR

[9] Agmon S., Nirenberg L., Protter M., “A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type”, Commun. Pure Appl. Math., 6 (1953), 455–470 | DOI | MR | Zbl