A maximum principle for a loaded hyperbolic-parabolic equation
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 80-85
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the maximum principle for a loaded equation of hyperbolic-parabolic type with variable coefficients. The characteristic load term is given on the degenerate line. The obtained results generalize the maximum principle for hyperbolic-parabolic equations provided in T. D. Dzhuraev's monograph, and in the hyperbolic domain the well-known Agmon–Nirenberg–Protter principle.
@article{VMJ_2016_18_4_a8,
author = {K. U. Khubiev},
title = {A maximum principle for a loaded hyperbolic-parabolic equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {80--85},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/}
}
K. U. Khubiev. A maximum principle for a loaded hyperbolic-parabolic equation. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 80-85. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/