A maximum principle for a loaded hyperbolic-parabolic equation
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 80-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the maximum principle for a loaded equation of hyperbolic-parabolic type with variable coefficients. The characteristic load term is given on the degenerate line. The obtained results generalize the maximum principle for hyperbolic-parabolic equations provided in T. D. Dzhuraev's monograph, and in the hyperbolic domain the well-known Agmon–Nirenberg–Protter principle.
@article{VMJ_2016_18_4_a8,
     author = {K. U. Khubiev},
     title = {A maximum principle for a loaded hyperbolic-parabolic equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {80--85},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/}
}
TY  - JOUR
AU  - K. U. Khubiev
TI  - A maximum principle for a loaded hyperbolic-parabolic equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 80
EP  - 85
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/
LA  - ru
ID  - VMJ_2016_18_4_a8
ER  - 
%0 Journal Article
%A K. U. Khubiev
%T A maximum principle for a loaded hyperbolic-parabolic equation
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 80-85
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/
%G ru
%F VMJ_2016_18_4_a8
K. U. Khubiev. A maximum principle for a loaded hyperbolic-parabolic equation. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 80-85. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a8/