Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 61-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider truncated Whittaker–Kotel'nikov–Shannon operators also known as sinc-operators. Conditions on continuous functions $f$ that guarantee uniform convergence of sinc-operators to such functions are obtained. It is shown that if a function is absolutely continuous, satisfies Dini–Lipschitz condition and vanishes at the end of the segment $[0,\pi]$, then sinc-operators converge uniformly to this function. In the case when $f(0)$ or $f(\pi)$ is not zero, sinc-operators lose the property of uniform convergence. For example, it is well known that sinc-operators have no uniform convergence to function identically equal to 1. In connection with this we introduce modified sinc-operators that possess a uniform convergence property for arbitrary absolutely continuous function, satisfying Dini–Lipschitz condition.
@article{VMJ_2016_18_4_a6,
     author = {A. Y. Umakhanov and I. I. Sharapudinov},
     title = {Interpolation of functions by the {Whittaker} sums and their modifications: conditions for uniform convergence},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {61--70},
     year = {2016},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a6/}
}
TY  - JOUR
AU  - A. Y. Umakhanov
AU  - I. I. Sharapudinov
TI  - Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 61
EP  - 70
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a6/
LA  - ru
ID  - VMJ_2016_18_4_a6
ER  - 
%0 Journal Article
%A A. Y. Umakhanov
%A I. I. Sharapudinov
%T Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 61-70
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a6/
%G ru
%F VMJ_2016_18_4_a6
A. Y. Umakhanov; I. I. Sharapudinov. Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 61-70. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a6/

[1] Whittaker E. T., “On the functions which are represented by expansions of the interpolation theory”, Proc. Roy. Soc. Edinburgh, 35 (1915), 181–194 | DOI

[2] Kotelnikov V. A., “O propusknoi sposobnosti «efira» i provoloki v elektrosvyazi”, Vsesoyuznyi energeticheskii kommitet. Materialy k I Vsesoyuznomu s'ezdu po voprosam rekonstruktsii dela svyazi i razvitiya slabotochnoi promyshlennosti. Po radiosektsii, Upravlenie svyazi RKKA, M., 1933, 1–19

[3] Shannon C. E., “A mathematical theory of communication”, Bell System Tech. J., 27 (1948), 379–423 ; 623–656 | DOI | MR | Zbl

[4] Schoenberg I. J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2 (1969), 167–206 | DOI | MR | Zbl

[5] McNamee J., Stenger F., Whitney E. L., “Whittaker's cardinal function in retrospect”, Mathematics of Computation, 25:113 (1971), 141–154 | MR | Zbl

[6] Stenger F., “An analytic function which is an approximate characteristic function”, SIAM J. Appl. Math., 12 (1975), 239–254 | MR | Zbl

[7] Stenger F., “Approximations via the Whittaker cardinal function”, J. Approx. Theory, 17 (1976), 222–240 | DOI | MR | Zbl

[8] Higgins J. R., “Five short stories about the cardinal series”, Bull. Amer. Math. Soc., 12 (1985), 45–89 | DOI | MR | Zbl

[9] Lund J., Kenneth L. B., Sinc Methods for Quadrature and Differential Equations, J. Soc. Ind. Appl. Math., Philadelphia, 1992, 304 pp. | MR | Zbl

[10] Stenger F., Numerical Metods Based on Sinc and Analytic Functions, Springer-Verlag, N. Y., 1993, 565 pp. | MR

[11] Young R. M., An Introduction to Nonharmonic Fourier Series, Revised first edition, Academic Press. A Harcourt Science and Technology Company, San Diego, 2001, 235 pp. | MR | Zbl

[12] Zhuk A. S., Zhuk V. V., “Nekotorye ortogonalnosti v teorii priblizheniya”, Zap. nauchn. semin. POMI, 314, 2004, 83–123 | Zbl

[13] Antuna A., Guirao L. G., Lopez M. A., “Shannon–Whittaker–Kotel'nikov's theorem generalized”, MATCH Commun. Math. Comput. Chem., 73 (2015), 385–396 | MR

[14] Trynin A. Yu., “Ob approksimatsii analiticheskikh funktsii operatorami Lagranzha–Shturma–Liuvillya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 10 Saratovskoi zimnei shk. (27 yanvarya–2 fevralya 2000 g.), Izd-vo Sarat. un-ta, Saratov, 2000, 140–141

[15] Trynin A. Yu., “Ob otsenke approksimatsii analiticheskikh funktsii interpolyatsionnym operatorom po sinkam”, Matematika. Mekhanika, 7, Izd-vo Sarat. un-ta, Saratov, 2005, 124–127

[16] Sklyarov V. P., “O nailuchshei ravnomernoi sinc approksimatsii na konechnom otrezke”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 13 Saratovskoi zimnei shk. (27 yanvarya–3 fevralya 2006 g), Izd-vo Sarat. un-ta, Saratov, 2006, 161

[17] Trynin A. Yu., Sklyarov V. P., “Error of sinc approximation of analytic functions on an interval”, Sampling Theory in Signal and Image Processing, 7:3 (2008), 263–270 | MR | Zbl

[18] Sklyarov V. P., “On the best uniform sinc-approximation on a finite interval”, East J. Approx., 14:2 (2008), 183–192 | MR | Zbl

[19] Trynin A. Yu., “Otsenki funktsii Lebega i formula Nevai dlya sinc-priblizhenii nepreryvnykh funktsii na otrezke”, Sib. mat. zhurn., 48:5 (2007), 1155–1166 | Zbl

[20] Trynin A. Yu., “Kriterii ravnomernoi skhodimosti sinc-priblizhenii na otrezke”, Izv. vuzov. Matematika, 2008, no. 6, 66–78

[21] Privalov A. A., “O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, Mat. zametki, 39:6 (1986), 228–243

[22] Trynin A. Yu., “Obobschenie teoremy otschetov Uittekera–Kotelnikova–Shennona dlya nepreryvnykh funktsii na otrezke”, Mat. sb., 200:11 (2009), 61–108 | DOI | Zbl

[23] Sharapudinov I. I., Umakhanov A. Ya., “Interpolyatsiya funktsii summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoi skhodimosti”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunar. Saratovskoi zimnei shk. (Saratov, 2016), 332–334