On the solutions of multi-dimensional arbitrary order differential equation with mixed senior partial derivative and power-law non-linearities
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 41-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the solutions of a multi-dimensional differential equation of arbitrary order containing mixed senior partial derivative and power-law non-linearities on unknown function and its first derivatives. The method of functional separation of variables is applied for examining of this equation. The particular solutions of the equation under consideration are obtained. Some theorems which permit to decrease the order of this equation are proved.
@article{VMJ_2016_18_4_a4,
     author = {I. V. Rakhmelevich},
     title = {On the solutions of multi-dimensional arbitrary order differential equation with mixed senior partial derivative and power-law non-linearities},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {41--49},
     year = {2016},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a4/}
}
TY  - JOUR
AU  - I. V. Rakhmelevich
TI  - On the solutions of multi-dimensional arbitrary order differential equation with mixed senior partial derivative and power-law non-linearities
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 41
EP  - 49
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a4/
LA  - ru
ID  - VMJ_2016_18_4_a4
ER  - 
%0 Journal Article
%A I. V. Rakhmelevich
%T On the solutions of multi-dimensional arbitrary order differential equation with mixed senior partial derivative and power-law non-linearities
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 41-49
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a4/
%G ru
%F VMJ_2016_18_4_a4
I. V. Rakhmelevich. On the solutions of multi-dimensional arbitrary order differential equation with mixed senior partial derivative and power-law non-linearities. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 41-49. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a4/

[1] Bondarenko B. A., Bazisnye sistemy polinomialnykh i kvazipolinomialnykh reshenii uravnenii v chastnykh proizvodnykh, Fan, Tashkent, 1987, 146 pp. | MR

[2] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazansk. matem. ob-vo, Kazan, 2001, 226 pp.

[3] Utkina E. A., “Ob odnom differentsialnom uravnenii so starshei chastnoi proizvodnoi v trekhmernom prostranstve”, Dif. uravneniya, 41:5 (2005), 697–701 | Zbl

[4] Mironov A. N., “Metod Rimana dlya uravnenii so starshei chastnoi proizvodnoi v $\mathbb{R}_n$”, Sib. mat. zhurn., 47:3 (2006), 584–594 | Zbl

[5] Zhegalov V. I., Tikhonova O. A., “Faktorizatsiya uravnenii s dominiruyuschei starshei chastnoi proizvodnoi”, Dif. uravneniya, 50:1 (2014), 66–72 | DOI | Zbl

[6] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: tochnye resheniya, Fizmatlit, M., 2002, 432 pp.

[7] Polyanin A. D., Zhurov A. I., “Obobschennoe i funktsionalnoe razdelenie peremennykh v matematicheskoi fizike i mekhanike”, Dokl. RAN, 382:5 (2002), 606–611 | Zbl

[8] Rakhmelevich I. V., “O primenenii metoda razdeleniya peremennykh k uravneniyam matematicheskoi fiziki, soderzhaschim odnorodnye funktsii ot proizvodnykh”, Vestn. Tomskogo gos. un-ta. Matematika i mekhanika, 2013, no. 3, 37–44

[9] Rakhmelevich I. V., “Ob uravneniyakh matematicheskoi fiziki, soderzhaschikh multiodnorodnye funktsii ot proizvodnykh”, Vestn. Tomskogo gos. un-ta. Matematika i mekhanika, 2014, no. 1, 42–50

[10] Miller J., Rubel L. A., “Functional separation of variables for Laplace equations in two dimensions”, J. of Physics A, 26 (1993), 1901–1913 | DOI | MR | Zbl

[11] Rakhmelevich I. V., “O dvumernykh giperbolicheskikh uravneniyakh so stepennoi nelineinostyu po proizvodnym”, Vestn. Tomskogo gos. un-ta. Matematika i mekhanika, 2015, no. 1, 12–19