On an algebra of analytic functionals connected with a Pommiez operator
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study properties of a convolution algebra formed by the dual $E'$ of a countable inductive limit $E$ of weighted Fréchet spaces of entire funtions of one complex variable with the multiplication-convolution $\otimes$ which is defined with the help of the shift operator for a Pommiez operator. The algebra $(E',\otimes)$ is isomorphic to the commutant of a Pommiez operator in the ring of all continuous linear operators in $E$. We prove that this isomorphism is topological if $E'$ is endowed with the weak topology and the corresponding commutant is endowed with the weakly operator topology. This result we use for powers of a Pommiez operator series expansions for all continuous linear operators commuting with this Pommiez operator on $E$. We describe also all nonzero multiplicative functionals on the algebra $(E',\otimes)$.
@article{VMJ_2016_18_4_a3,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {On an algebra of analytic functionals connected with a {Pommiez} operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {34--40},
     year = {2016},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a3/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - On an algebra of analytic functionals connected with a Pommiez operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 34
EP  - 40
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a3/
LA  - ru
ID  - VMJ_2016_18_4_a3
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T On an algebra of analytic functionals connected with a Pommiez operator
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 34-40
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a3/
%G ru
%F VMJ_2016_18_4_a3
O. A. Ivanova; S. N. Melikhov. On an algebra of analytic functionals connected with a Pommiez operator. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 34-40. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a3/

[1] Ivanova O. A., Melikhov S. N., “Ob interpoliruyuschei funktsii A. F. Leonteva”, Ufimsk. mat. zhurn., 6:3 (2014), 17–27

[2] Ivanova O. A., Melikhov S. N., “Ob operatorakh, perestanovochnykh s operatorom tipa Pomme v vesovykh prostranstvakh tselykh funktsii”, Algebra i analiz, 28:2 (2016), 114–137

[3] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956, 632 pp.

[4] Linchuk N. E., “Predstavlenie kommutantov operatora Pomme i ikh prilozheniya”, Mat. zametki, 44:6 (1988), 794–802

[5] Nagnibida N. I., “O lineinykh nepreryvnykh operatorakh v analiticheskom prostranstve, perestanovochnykh s operatorom differentsirovaniya”, Resp. nauch. sb. Kharkovskogo gos. un-ta im. A. M. Gorkogo, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 2, Izd-vo Khark. un-ta, Kharkov, 1966, 160–164 | Zbl

[6] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967, 271 pp. | MR

[7] Tkachenko V. A., “Ob operatorakh, kommutiruyuschikh s obobschennym integrirovaniem v prostranstvakh analiticheskikh funktsionalov”, Mat. zametki, 29:2 (1979), 271–282

[8] Khelemskii A. Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004, 552 pp.

[9] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971, 360 pp. | MR

[10] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969, 1072 pp.

[11] Haslinger F., “Weighted spaces of entire functions”, Indiana Univ. Math. J., 35:1 (1986), 193–208 | DOI | MR | Zbl

[12] Meise R., Vogt D., Introduction to Functional Analysis, Oxford Univ. Press, N. Y., 1997, 437 pp. | MR | Zbl