On an algebra of analytic functionals connected with a Pommiez operator
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 34-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We study properties of a convolution algebra formed by the dual $E'$ of a countable inductive limit $E$ of weighted Fréchet spaces of entire funtions of one complex variable with the multiplication-convolution $\otimes$ which is defined with the help of the shift operator for a Pommiez operator. The algebra $(E',\otimes)$ is isomorphic to the commutant of a Pommiez operator in the ring of all continuous linear operators in $E$. We prove that this isomorphism is topological if $E'$ is endowed with the weak topology and the corresponding commutant is endowed with the weakly operator topology. This result we use for powers of a Pommiez operator series expansions for all continuous linear operators commuting with this Pommiez operator on $E$. We describe also all nonzero multiplicative functionals on the algebra $(E',\otimes)$.
@article{VMJ_2016_18_4_a3,
author = {O. A. Ivanova and S. N. Melikhov},
title = {On an algebra of analytic functionals connected with a {Pommiez} operator},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {34--40},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a3/}
}
TY - JOUR AU - O. A. Ivanova AU - S. N. Melikhov TI - On an algebra of analytic functionals connected with a Pommiez operator JO - Vladikavkazskij matematičeskij žurnal PY - 2016 SP - 34 EP - 40 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a3/ LA - ru ID - VMJ_2016_18_4_a3 ER -
O. A. Ivanova; S. N. Melikhov. On an algebra of analytic functionals connected with a Pommiez operator. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 34-40. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a3/