On correctness conditions of a soft-decisions decoder for ternary Reed--Muller codes of second order
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 23-33
Voir la notice de l'article provenant de la source Math-Net.Ru
We study theoretically conditions of correct operation of a new soft decisions decoder of Reed–Muller second order codes over the field $\mathbb F_3$, whose experimental research showed that its corrective ability exceeds that of the decoder of the minimum Hamming's distance. For discrete data channel allocated we indicated the smoothness condition under which the decoder guarantees correction of all errors, the number of which does not exceed the permissible number of errors referred to the code design.
@article{VMJ_2016_18_4_a2,
author = {V. M. Deundyak and N. S. Mogilevskaya},
title = {On correctness conditions of a soft-decisions decoder for ternary {Reed--Muller} codes of second order},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {23--33},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/}
}
TY - JOUR AU - V. M. Deundyak AU - N. S. Mogilevskaya TI - On correctness conditions of a soft-decisions decoder for ternary Reed--Muller codes of second order JO - Vladikavkazskij matematičeskij žurnal PY - 2016 SP - 23 EP - 33 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/ LA - ru ID - VMJ_2016_18_4_a2 ER -
%0 Journal Article %A V. M. Deundyak %A N. S. Mogilevskaya %T On correctness conditions of a soft-decisions decoder for ternary Reed--Muller codes of second order %J Vladikavkazskij matematičeskij žurnal %D 2016 %P 23-33 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/ %G ru %F VMJ_2016_18_4_a2
V. M. Deundyak; N. S. Mogilevskaya. On correctness conditions of a soft-decisions decoder for ternary Reed--Muller codes of second order. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 23-33. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/