@article{VMJ_2016_18_4_a2,
author = {V. M. Deundyak and N. S. Mogilevskaya},
title = {On correctness conditions of a soft-decisions decoder for ternary {Reed{\textendash}Muller} codes of second order},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {23--33},
year = {2016},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/}
}
TY - JOUR AU - V. M. Deundyak AU - N. S. Mogilevskaya TI - On correctness conditions of a soft-decisions decoder for ternary Reed–Muller codes of second order JO - Vladikavkazskij matematičeskij žurnal PY - 2016 SP - 23 EP - 33 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/ LA - ru ID - VMJ_2016_18_4_a2 ER -
%0 Journal Article %A V. M. Deundyak %A N. S. Mogilevskaya %T On correctness conditions of a soft-decisions decoder for ternary Reed–Muller codes of second order %J Vladikavkazskij matematičeskij žurnal %D 2016 %P 23-33 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/ %G ru %F VMJ_2016_18_4_a2
V. M. Deundyak; N. S. Mogilevskaya. On correctness conditions of a soft-decisions decoder for ternary Reed–Muller codes of second order. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 23-33. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a2/
[1] Deundyak V. M., Maevskii A. E., Mogilevskaya N. S., Metody pomekhoustoichivoi zaschity dannykh, Ucheb., Izd-vo Yuzhnogo federalnogo un-ta, Rostov n/D., 2014, 309 pp.
[2] Prokis Dzh., Tsifrovaya svyaz, Radio i svyaz, M., 2000, 800 pp.
[3] Sidelnikov V. M., Pershakov A. S., “Dekodirovanie kodov Rida–Mallera pri bolshom chisle oshibok”, Problemy peredachi informatsii, 28:3 (1992), 80–94 | Zbl
[4] Loidreau P., Sakkour B., “Modified version of Sidel'nikov–Pershakov decoding algorithm for binary second order Reed–Muller codes”, Ninth International Workshop on Algebraic and Combinatorial Coding theory (ACCT-9) (Kranevo, 2004), 266–271
[5] Mogilevskaya N. S., Skorobogat V. R., Chudakov V. S., “Eksperimentalnoe issledovanie dekoderov kodov Rida — Mallera vtorogo poryadka”, Vestn. Donskogo gos. tekh. un-ta, 8:3 (2008), 231–237 | Zbl
[6] Deundyak V. M., Mogilevskaya N. S., “Model troichnogo kanala peredachi dannykh s ispolzovaniem dekodera myagkikh reshenii kodov Rida–Mallera vtorogo poryadka”, Izv. vuzov. Sev.-Kavk. region. Tekhn. nauki, 2015, no. 1(182), 3–10
[7] Teilor M., Psevdodifferentsialnye operatory, Mir, M., 1985, 25 pp.
[8] Mogilevskaya N. S., “Korrektiruyuschaya sposobnost dekodera myagkikh reshenii troichnykh kodov Rida–Mallera vtorogo poryadka pri bolshom chisle oshibok”, Vestn. Donskogo gos. tekh. un-ta, 2015, no. 1, 121–130
[9] Deundyak V. M., Kosolapov Yu. V., “O stoikosti kodovogo zashumleniya k statisticheskomu analizu nablyudaemykh dannykh mnogokratnogo povtoreniya”, Model. i analiz inform. sistem, 19:4 (2012), 110–127
[10] Bukashkin S. A., “Metod sluchainogo kodirovaniya”, Radiotekhnika, 2014, no. 4, 30–36
[11] Kosolapov Yu. V., “Kody dlya obobschennoi modeli kanala s podslushivaniem”, Problemy peredachi informatsii, 51:1 (2015), 23–28
[12] Logachev O. A., Salnikov A. P., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp.
[13] Pellikaan R., Wu X.-W., “List decoding of $q$-ary Reed–Muller codes”, IEEE. Trans. Infor. Theory, 50:4 (2004), 679–682 | DOI | MR | Zbl
[14] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979, 280 pp.