On generalization of Fourier and Hartley transforms for some quotient class of sequences
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a class of distributions and generate two spaces of Boehmians for certain class of integral operators. We derive a convolution theorem and generate two spaces of Boehmians. The integral operator under concern is well-defined, linear and one-to-one in the class of Boehmians. An inverse problem is also discussed in some details.
@article{VMJ_2016_18_4_a0,
     author = {S. K. Q. Al-Omari},
     title = {On generalization of {Fourier} and {Hartley} transforms for some quotient class of sequences},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--14},
     year = {2016},
     volume = {18},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/}
}
TY  - JOUR
AU  - S. K. Q. Al-Omari
TI  - On generalization of Fourier and Hartley transforms for some quotient class of sequences
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 3
EP  - 14
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/
LA  - en
ID  - VMJ_2016_18_4_a0
ER  - 
%0 Journal Article
%A S. K. Q. Al-Omari
%T On generalization of Fourier and Hartley transforms for some quotient class of sequences
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 3-14
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/
%G en
%F VMJ_2016_18_4_a0
S. K. Q. Al-Omari. On generalization of Fourier and Hartley transforms for some quotient class of sequences. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/

[1] Al-Omari S. K. Q., Loonker D., Banerji P. K., Kalla S. L., “Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and ultra-Boehmian spaces”, Integr. Transf. Spec. Funct., 19:6 (2008), 453–462 | DOI | MR | Zbl

[2] Al-Omari S. K. Q., Kilicman A., “On diffraction Fresnel transforms for Boehmians”, Abstr. Appl. Anal., 2011 (2011), 712746, 11 pp. | DOI | MR | Zbl

[3] Al-Omari S. K. Q., “Hartley transforms on certain space of generalized functions”, Georgian Math. J., 20:3 (2013), 415–426 | DOI | MR | Zbl

[4] Al-Omari S. K. Q., Kilicman A., “Note on Boehmians for class of optical Fresnel wavelet transforms”, J. Funct. Space Appl., 2012 (2012), 405368, 1–13 | DOI | MR

[5] Al-Omari S. K. Q., Kilicman A., “On generalized Hartley–Hilbert and Fourier–Hilbert transforms”, Adv. Diff. Equ., 2012:232 (2012), 1–12 | DOI | MR

[6] Al-Omari S. K. Q., “On a generalized Meijer–Laplace transforms of Fox function type kernels and their extension to a class of Boehmians”, Georgian Math. J., 2015 (to appear)

[7] Al-Omari S. K. Q., “Some characteristics of $S$ transforms in a class of rapidly decreasing Boehmians”, J. Pseudo-Differ. Oper. Appl., 5:4 (2014), 527–537 | DOI | MR | Zbl

[8] Boehme T. K., “The support of Mikusinski operators”, Tran. Amer. Math. Soc., 176 (1973), 319–334 | MR | Zbl

[9] Banerji P. K., Al-Omari S. K. Q., Debnath L., “Tempered distributional Fourier sine (cosine) transform”, Integr. Transf. Spec. Funct., 17:11 (2006), 759–768 | DOI | MR | Zbl

[10] Millane R. P., “Analytic properties of the Hartley transform and their Applications”, Proc. IEEE, 82:3 (1994), 413–428 | DOI

[11] Nemzer D., “$S$-asymptotic properties of Boehmians”, Integr. Transf. Spec. Funct., 21:7 (2010), 503–513 | DOI | MR | Zbl

[12] Nemzer D., “A note on the convergence of a series in the space of Boehmians”, Bull. Pure Appl. Math., 2 (2008), 63–69 | MR | Zbl

[13] Pathak R. S., Integral transforms of generalized functions and their applications, Gordon and Breach Science Publishers, Amsterdam, 1997 | MR | Zbl

[14] Mikusinski P., “Convergence of Boehmians”, Japanese J. Math., 9:1 (1983), 159–179 | MR | Zbl

[15] Sundararajan N., Srinivas Y., “Fourier–Hilbert versus Hartley–Hilbert transforms with some geophysical applications”, J. Appl. Geophys., 71:4 (2010), 157–161 | DOI