On generalization of Fourier and Hartley transforms for some quotient class of sequences
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider a class of distributions and generate two spaces of Boehmians for certain class of integral operators. We derive a convolution theorem and generate two spaces of Boehmians. The integral operator under concern is well-defined, linear and one-to-one in the class of Boehmians. An inverse problem is also discussed in some details.
@article{VMJ_2016_18_4_a0,
author = {S. K. Q. Al-Omari},
title = {On generalization of {Fourier} and {Hartley} transforms for some quotient class of sequences},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--14},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/}
}
TY - JOUR AU - S. K. Q. Al-Omari TI - On generalization of Fourier and Hartley transforms for some quotient class of sequences JO - Vladikavkazskij matematičeskij žurnal PY - 2016 SP - 3 EP - 14 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/ LA - en ID - VMJ_2016_18_4_a0 ER -
S. K. Q. Al-Omari. On generalization of Fourier and Hartley transforms for some quotient class of sequences. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/