On generalization of Fourier and Hartley transforms for some quotient class of sequences
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a class of distributions and generate two spaces of Boehmians for certain class of integral operators. We derive a convolution theorem and generate two spaces of Boehmians. The integral operator under concern is well-defined, linear and one-to-one in the class of Boehmians. An inverse problem is also discussed in some details.
@article{VMJ_2016_18_4_a0,
     author = {S. K. Q. Al-Omari},
     title = {On generalization of {Fourier} and {Hartley} transforms for some quotient class of sequences},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/}
}
TY  - JOUR
AU  - S. K. Q. Al-Omari
TI  - On generalization of Fourier and Hartley transforms for some quotient class of sequences
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 3
EP  - 14
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/
LA  - en
ID  - VMJ_2016_18_4_a0
ER  - 
%0 Journal Article
%A S. K. Q. Al-Omari
%T On generalization of Fourier and Hartley transforms for some quotient class of sequences
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 3-14
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/
%G en
%F VMJ_2016_18_4_a0
S. K. Q. Al-Omari. On generalization of Fourier and Hartley transforms for some quotient class of sequences. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/VMJ_2016_18_4_a0/