Necessary optimality conditions in non-smooth problems with equality constraints
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 72-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary conditions for extremum in non smooth problems are obtained in this article. The problem under consideration includes both equality and inequality type constrains given by non-smooth functions. The necessary conditions are given in terms of asymptotic subdifferentials. Generalized Lagranges's multiplier rule for non-smooth problems with not local lipschitz constraints is obtained. It is proved also that Peno's and Clark's generalized derivatives are upper convex approximations for local Lipshitz functions.
@article{VMJ_2016_18_3_a7,
     author = {R. A. Khachatryan},
     title = {Necessary optimality conditions in non-smooth problems with equality constraints},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {72--83},
     year = {2016},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/}
}
TY  - JOUR
AU  - R. A. Khachatryan
TI  - Necessary optimality conditions in non-smooth problems with equality constraints
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 72
EP  - 83
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/
LA  - ru
ID  - VMJ_2016_18_3_a7
ER  - 
%0 Journal Article
%A R. A. Khachatryan
%T Necessary optimality conditions in non-smooth problems with equality constraints
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 72-83
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/
%G ru
%F VMJ_2016_18_3_a7
R. A. Khachatryan. Necessary optimality conditions in non-smooth problems with equality constraints. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 72-83. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/

[1] Boltyanskii V. G., Optimalnoe upravlenie diskretnymi sistemami, Nauka, M., 1973, 446 pp. | MR

[2] Boltyanskii V. G., “Metod shatrov v teorii ekstremalnykh zadach”, Uspekhi mat. nauk, 30:3 (1975), 3–55 | MR | Zbl

[3] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika v teorii ekstremuma”, Uspekhi mat. nauk, 35:5 (1980), 11–46 | MR | Zbl

[4] Clarke F. H., “A new approach to Lagrange multipliers”, Math. Oper. Res., 1 (1976), 165–174 | DOI | MR

[5] Polovinkin E. S., Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2014, 608 pp.

[6] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR

[7] Pshenichnyi B. N., Khachatryan R. A., “Ogranicheniya tipa ravenstv v negladkikh zadachakh optimizatsii”, Dokl. AN SSSR, 267:3 (1982), 553–556 | MR

[8] Pshenichnyi B. N., Khachatryan R. A., “Neobkhodimye usloviya ekstremuma dlya negladkikh zadach”, Kibernetika (Kiev), 1983, no. 3, 111–116 | MR

[9] Khachatryan R. A., “O peresechenii shatrov v gilbertovom prostranstve i neobkhodimykh usloviyakh ekstremuma dlya negladkikh funktsii”, Izv. AN ARM SSR. Matematika, 23:3 (1988), 149–162 | Zbl

[10] Michel P., Penot J.-P., “Calcul sous-differentiel pour les functions lipschitziennes et non lipschitziennes”, C. R. Acad. Sc. Paris. Ser. I, 291 (1984), 269–272 | MR

[11] Ioffe A. D., “A Lagrange multiplier rule with small convex-valued subdifferential for non-smoth problems of mathematical programming involving equality and nonfunctional constraints”, Math. Programming, 58 (1993), 137–145 | DOI | MR | Zbl

[12] Ivanashi R., “On the Intersection of Continuous Local Tents”, Proc. Japan Acad. Ser. A, 69 (1993), 308–311 | DOI | MR

[13] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl