Necessary optimality conditions in non-smooth problems with equality constraints
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 72-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary conditions for extremum in non smooth problems are obtained in this article. The problem under consideration includes both equality and inequality type constrains given by non-smooth functions. The necessary conditions are given in terms of asymptotic subdifferentials. Generalized Lagranges's multiplier rule for non-smooth problems with not local lipschitz constraints is obtained. It is proved also that Peno's and Clark's generalized derivatives are upper convex approximations for local Lipshitz functions.
@article{VMJ_2016_18_3_a7,
     author = {R. A. Khachatryan},
     title = {Necessary optimality conditions in non-smooth problems with equality constraints},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {72--83},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/}
}
TY  - JOUR
AU  - R. A. Khachatryan
TI  - Necessary optimality conditions in non-smooth problems with equality constraints
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 72
EP  - 83
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/
LA  - ru
ID  - VMJ_2016_18_3_a7
ER  - 
%0 Journal Article
%A R. A. Khachatryan
%T Necessary optimality conditions in non-smooth problems with equality constraints
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 72-83
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/
%G ru
%F VMJ_2016_18_3_a7
R. A. Khachatryan. Necessary optimality conditions in non-smooth problems with equality constraints. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 72-83. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a7/