On mean convergence of Fourier–Jacobi series
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 43-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conditions on coefficients for mean convergence of Fourier–Jacobi series are obtained. The asymptotic formulae for the best approximation in Lebesgue spaces are derived and an asymptotic equality for Valee–Poussin sums is obtained. Some properties of generalized shift function are also studied.
@article{VMJ_2016_18_3_a5,
     author = {E. J. Ibrahimov},
     title = {On mean convergence of {Fourier{\textendash}Jacobi} series},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {43--59},
     year = {2016},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a5/}
}
TY  - JOUR
AU  - E. J. Ibrahimov
TI  - On mean convergence of Fourier–Jacobi series
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 43
EP  - 59
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a5/
LA  - ru
ID  - VMJ_2016_18_3_a5
ER  - 
%0 Journal Article
%A E. J. Ibrahimov
%T On mean convergence of Fourier–Jacobi series
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 43-59
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a5/
%G ru
%F VMJ_2016_18_3_a5
E. J. Ibrahimov. On mean convergence of Fourier–Jacobi series. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 43-59. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a5/

[1] Badkov V. M., “Approksimativnye svoistva ryadov Fure po ortogonalnym polinomam”, Uspekhi mat. nauk, 33:3 (1978), 51–106 | MR | Zbl

[2] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.

[3] Ibrahimov E. J., “Jacobi transform method in approximation theory”, Procedings of A. Razmadze Math. Inst., 169 (2015), 33–82 | MR | Zbl

[4] Caton W. B., Hille E., “Laguerre polynomials and Laplace integrals”, Duke Math. J., 12 (1945), 217–242 | DOI | MR | Zbl

[5] Kober H., “A note on approximation by rational functions”, Proc. Edinburgh Math. Soc., 7:2 (1946), 123–133 | DOI | MR | Zbl

[6] Kazakova N. M., O poryadkakh konstant Lebega summ Fure–Yakobi v prostranstvakh $(QL)^r$, Dep. v VINITI, No 2113, 1984, 66 pp.

[7] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23 (1969), 306–310 | DOI | MR | Zbl

[8] Motornyi V. P., “O skhodimosti v srednem ryadov Fure po mnogochlenam Lezhandra”, Dokl. AN SSSR, 204:4 (1972), 788–790 | MR | Zbl

[9] Newman J., Rudin W., “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3 (1952), 219–222 | DOI | MR | Zbl

[10] Neschadim S. G., Priblizhenie funktsii summami Fure po mnogochlenam Yakobi v integralnoi metrike, Dep. v VINITI, No 4559, 1983, 28 pp.

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 2-e izd., Gos. izd-vo tekhn.-teoret. lit-ry, M., 1957, 552 pp. | MR

[12] Harry Pollard, “The mean convergence of orthogonal series of polynomials”, Proc. Natl. Acad. Sci. USA, 32 (1946), 8–10 | DOI | MR | Zbl

[13] Harry Pollard, “The mean convergence of orthogonal series. I”, Trans. Amer. Math. Soc., 62 (1947), 387–403 | DOI | MR | Zbl

[14] Paley E. A. C., “A remarkable series of orthogonal functions”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl

[15] Potapov M. K., “O priblizhenii mnogochlenami Yakobi”, Vestn. Mosk. un-ta. Mat-ka. Mekhanika, 1977, no. 5, 70–82 | MR | Zbl

[16] Riesz M., “Sur les series conjuges”, Math. Z., 27 (1927), 218–244 | DOI | MR | Zbl

[17] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 1976, 327 pp. | MR

[18] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit-ry, M., 1960, 624 pp.

[19] Fomin G. A., “O skhodimosti ryadov Fure v srednem”, Mat. sb., 110(152):2 (1979), 251–265 | MR | Zbl

[20] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, Izd-vo inostr. lit-ry, M., 1948, 456 pp.

[21] Khodak L. B., O skhodimosti ryadov Fure–Yakobi v integralnoi metrike, Dep. v Ukr. NIINTI, Dnepropetrovsk, 1979, 29 pp.

[22] Schauder J., “Eine Eigenschaft des Haarschen Orthogonalsystems”, Math. Zeitschrift, 28:1 (1928), 317–320 | DOI | MR | Zbl

[23] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.