On mean convergence of Fourier--Jacobi series
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 43-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The conditions on coefficients for mean convergence of Fourier–Jacobi series are obtained. The asymptotic formulae for the best approximation in Lebesgue spaces are derived and an asymptotic equality for Valee–Poussin sums is obtained. Some properties of generalized shift function are also studied.
			
            
            
            
          
        
      @article{VMJ_2016_18_3_a5,
     author = {E. J. Ibrahimov},
     title = {On mean convergence of {Fourier--Jacobi} series},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {43--59},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a5/}
}
                      
                      
                    E. J. Ibrahimov. On mean convergence of Fourier--Jacobi series. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 43-59. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a5/
