@article{VMJ_2016_18_3_a4,
author = {A. K. Gutnova and A. A. Makhnev},
title = {Extensions of pseudogeometric graphs for~$pG_{s-5}(s,t)$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {35--42},
year = {2016},
volume = {18},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a4/}
}
A. K. Gutnova; A. A. Makhnev. Extensions of pseudogeometric graphs for $pG_{s-5}(s,t)$. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 35-42. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a4/
[1] Gutnova A. K., Makhnev A. A., “Rasshireniya psevdogeometricheskikh grafov dlya $pG_{s-4}(s,t)$”, Vladikavk. mat. zhurn., 17:1 (2015), 21–30
[2] Makhnev A. A., “Strongly regular graphs with nonprincipal eigenvalue 5 and its extensions”, International conference “Groups and Graphs, Algorithms and Automata”, Abstracts, Yekaterinburg, 2015, 68
[3] Koolen J. H., Park J., “Distance-regular graphs with $a_1$ or $c_2$ at least half the valency”, J. Comb. Theory Ser. A, 119 (2012), 546–555 | DOI | MR | Zbl
[4] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[5] Brouwer A. E., Haemers W. H., Spectra of graphs (course notes), http://www.win.tue.nl/~aeb/
[6] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[7] Jurisic A., Koolen J., “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory, 118:3 (2011), 842–852 | DOI | MR | Zbl