An elementary net associated with the elementary group
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 31-34
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $R$ be an arbitrary commutative ring with identity, $n$ be a positive integer, $n\geq2$. The set $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of additive subgroups of the ring $R$ is called a net (or carpet) over the ring $R$ of order $n$, if the inclusions $\sigma_{ir}\sigma_ {rj}\subseteq\sigma_{ij}$ hold for all $i,r,j$. The net without the diagonal, is called an elementary net. The elementary net $\sigma=(\sigma_{ij})$, $1\leq i\neq j\leq n$, is called complemented, if for some additive subgroups $\sigma_{ii}$ of the ring $R$ the set $\sigma=(\sigma_ {ij})$, $1\leq i,j\leq n$ is a (full) net. The elementary net $\sigma=(\sigma_{ij})$ is complemented if and only if the inclusions $\sigma_{ij}\sigma_{ji}\sigma_{ij}\subseteq\sigma_{ij}$ hold for any $i\neq j$. Some examples of not complemented elementary nets are well known. With every net $\sigma$ can be associated a group $G(\sigma)$ called a net group. This groups are important for the investigation of different classes of groups. 
It is proved in this work that for every elementary net $\sigma$ there exists another elementary net $\Omega$ associated with the elementary group $E(\sigma)$. It is also proved that an elementary net $\Omega$ associated with the elementary group $E(\sigma)$ is the smallest elementary net that contains the elementary net $\sigma$.
			
            
            
            
          
        
      @article{VMJ_2016_18_3_a3,
     author = {R. Y. Dryaeva and V. A. Koibaev},
     title = {An elementary net associated with the elementary group},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--34},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a3/}
}
                      
                      
                    R. Y. Dryaeva; V. A. Koibaev. An elementary net associated with the elementary group. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 31-34. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a3/
