Neumann problem for an ordinary differential equation of fractional order
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 22-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear ordinary differential equation of fractional order with constant coefficients is considered in the paper. Such equation should be subsumed into the class of discretely distributed order, or multi-term differential equations. The fractional differentiation is given by the Caputo derivative. We solve The Nuemann problem for the equation under study, prove the existence and uniqueness of the solution, find an explicit representation for solution in terms of the Wright function, and construct the respective Green function. It is also proveв that the real part of the spectrum of the problem may consist at most of a finite number of eigenvalues.
@article{VMJ_2016_18_3_a2,
     author = {L. H. Gadzova},
     title = {Neumann problem for an ordinary differential equation of fractional order},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {22--30},
     year = {2016},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a2/}
}
TY  - JOUR
AU  - L. H. Gadzova
TI  - Neumann problem for an ordinary differential equation of fractional order
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 22
EP  - 30
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a2/
LA  - ru
ID  - VMJ_2016_18_3_a2
ER  - 
%0 Journal Article
%A L. H. Gadzova
%T Neumann problem for an ordinary differential equation of fractional order
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 22-30
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a2/
%G ru
%F VMJ_2016_18_3_a2
L. H. Gadzova. Neumann problem for an ordinary differential equation of fractional order. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 22-30. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a2/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] Barrett J. H., “Differential equations of non-integer order”, Canadian J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl

[3] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Armyanskoi SSR. Matematika, 3:1 (1968), 3–28

[4] Dzhrbashyan M. M., “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka tipa Shturma–Liuvillya”, Izv. AN Armyanskoi SSR, 1970, no. 2, 71–96 | Zbl

[5] Nakhushev A. M., “Zadacha Shturma–Liuvillya dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, Dokl. AN SSSR, 234:2 (1977), 308–311 | MR | Zbl

[6] Ozturk I., “On the theory of fractional differential equation”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 3:2 (1998), 35–39

[7] Pskhu A. V., “K teorii zadachi Koshi dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Dokl. Adygskoi (Cherkesskoi) mezhdunar. akad. nauk, 11:1 (2009), 61–65

[8] Pskhu A. V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Mat. sb., 202:4 (2011), 111–122 | DOI | MR | Zbl

[9] Gadzova L. Kh., “Obobschennaya zadacha Dirikhle dlya lineinogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Dif. uravneniya, 50:1 (2014), 121–125 | DOI | MR | Zbl

[10] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[11] Gadzova L. Kh., “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Dokl. Adygskoi (Cherkesskoi) mezhdunar. akad. nauk, 15:2 (2013), 36–39

[12] Gadzova L. Kh., “K teorii kraevykh zadach dlya differentsialnogo uravneniya drobnogo poryadka s proizvodnoi Kaputo”, Dokl. Adygskoi (Cherkesskoi) mezhdunar. akad. nauk, 16:2 (2014), 34–40

[13] Bagley R. L., Torvik P. J., “Fractional calculus in the transient analysis of viscoelastically damped structures”, AIAA J., 23:6 (1985), 918–925 | DOI | Zbl

[14] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR

[15] Nakhushev A. M., Tkhakakhov R. B., “O kontinualnykh analogakh reologicheskikh uravnenii sostoyaniya i logisticheskom zakone izmeneniya vyazkouprugikh svoistv polimera”, Dokl. Adygskoi (Cherkesskoi) mezhdunar. akad. nauk, 1:2 (1995), 6–11

[16] Wright E. M., “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl

[17] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp. | MR

[18] Shtokala I. Z., Operatsionnoe ischislenie (obobschenie i prilozheniya), Naukova dumka, Kiev, 1972, 304 pp. | MR

[19] Kudryavtsev L. D., Kurs matematicheskogo analiza, v. 2, Vysshaya shkola, M., 1981, 584 pp. | MR