Reversible AJW-algebras
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 15-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result states that every special AJW-algebra can be decomposed into the direct sum of totally irreversible and reversible subalgebras. In turn, every reversible special AJW-algebra decomposes into a direct sum of two subalgebras, one of which has purely real enveloping real von Neumann algebra, and the second one contains an ideal, whose complexification is a C$^*$-algebra and the annihilator of this complexification in the enveloping $C^*$-algebra of this subalgebra is equal to zero.
@article{VMJ_2016_18_3_a1,
     author = {Sh. A. Ayupov and F. N. Arzikulov},
     title = {Reversible {AJW-algebras}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {15--21},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a1/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - F. N. Arzikulov
TI  - Reversible AJW-algebras
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 15
EP  - 21
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a1/
LA  - en
ID  - VMJ_2016_18_3_a1
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A F. N. Arzikulov
%T Reversible AJW-algebras
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 15-21
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a1/
%G en
%F VMJ_2016_18_3_a1
Sh. A. Ayupov; F. N. Arzikulov. Reversible AJW-algebras. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 15-21. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a1/