Reversible AJW-algebras
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 15-21
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result states that every special AJW-algebra can be decomposed into the direct sum of totally irreversible and reversible subalgebras. In turn, every reversible special AJW-algebra decomposes into a direct sum of two subalgebras, one of which has purely real enveloping real von Neumann algebra, and the second one contains an ideal, whose complexification is a C$^*$-algebra and the annihilator of this complexification in the enveloping $C^*$-algebra of this subalgebra is equal to zero.
@article{VMJ_2016_18_3_a1,
author = {Sh. A. Ayupov and F. N. Arzikulov},
title = {Reversible {AJW-algebras}},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {15--21},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a1/}
}
Sh. A. Ayupov; F. N. Arzikulov. Reversible AJW-algebras. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 3, pp. 15-21. http://geodesic.mathdoc.fr/item/VMJ_2016_18_3_a1/