On the Cauchy problem in the theory of coefficient inverse problems for elastic bodies
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 31-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problems on the identification of inhomogeneous material properties of an elastic plate is considered. The condition of uniqueness of the inverse problems statements are analyzed. Direct problem on finding displacements to formulate the additional input data of the inverse problem is investigated; the accuracy of the direct problem solution is estimated by means of comparison with finite-element computation. A scheme of the inverse problem solving is proposed based on the application of the weak statement of the initial boundary problem and the projection method. A series of computation experiments on a reconstruction of various types of inhomogeneity laws of the Lamé coefficients is performed.
@article{VMJ_2016_18_2_a3,
     author = {A. O. Vatulyan and L. S. Gukasyan and R. D. Nedin},
     title = {On the {Cauchy} problem in the theory of coefficient inverse problems for elastic bodies},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--40},
     year = {2016},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a3/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - L. S. Gukasyan
AU  - R. D. Nedin
TI  - On the Cauchy problem in the theory of coefficient inverse problems for elastic bodies
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 31
EP  - 40
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a3/
LA  - ru
ID  - VMJ_2016_18_2_a3
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A L. S. Gukasyan
%A R. D. Nedin
%T On the Cauchy problem in the theory of coefficient inverse problems for elastic bodies
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 31-40
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a3/
%G ru
%F VMJ_2016_18_2_a3
A. O. Vatulyan; L. S. Gukasyan; R. D. Nedin. On the Cauchy problem in the theory of coefficient inverse problems for elastic bodies. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 31-40. http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a3/

[1] Vatulyan A. O., Obratnye zadachi v mekhanike deformiruemogo tverdogo tela, Fizmatlit, M., 2007, 223 pp.

[2] Vatulyan A. O., “K teorii obratnykh zadach v lineinoi mekhanike deformiruemogo tela”, PMM, 74:6 (2010), 909–916 | MR | Zbl

[3] Bonnet M., Constantinescu A., “Inverse problems in elasticity”, Inverse Probl., 21 (2005), 1–50 | DOI | MR

[4] Bocharova O. V., Vatulyan A. O., “O rekonstruktsii plotnosti i modulya Yunga dlya neodnorodnogo sterzhnya”, Akusticheskii zhurn., 55:3 (2009), 275–282

[5] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 472 pp. | MR

[6] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 287 pp. | MR

[7] Filippov A. P., Kolebaniya deformiruemykh sistem, Mashinostroenie, M., 1970, 736 pp.

[8] Gyunter N. M., Integrirovanie uravnenii pervogo poryadka v chastnykh proizvodnykh, Gostekhizdat, Leningrad, 1934, 359 pp.

[9] Dudarev V. V., Nedin R. D., Vatulyan A. O., “Nondestructive identification of inhomogeneous residual stress state in deformable bodies on the basis of the acoustic sounding method”, Advanced Materials Research, 996 (2014), 409–414 | DOI

[10] Nedin R. D., Vatulyan A. O., “Inverse Problem of Non-homogeneous Residual Stress Identification in Thin Plates”, Int. J. Solids Struct., 50 (2013), 2107–2114 | DOI

[11] Vatulyan A. O. Gukasyan L. S., “O zadache Koshi dlya uravneniya v chastnykh proizvodnykh pervogo poryadka i ee prilozheniyakh v teorii obratnykh zadach”, Vestn. DGTU, 68:7 (2012), 11–20