Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 12-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The category of exponential $\mathrm{MR}$-groups for an associative ring $\mathrm R$ with unity is defined in [1]. The present paper is devoted to the study of partial exponential $\mathrm{MR}$-groups which are isomorphically embedded in their tensor completion over the ring $\mathrm R$. The key to its understanding is the notion of tensor completion introduced in [1]. As a consequence, the description of free $\mathrm{MR}$-groups in the language of group constructions is obtained.
			
            
            
            
          
        
      @article{VMJ_2016_18_2_a1,
     author = {M. G. Amaglobeli},
     title = {Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {12--18},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a1/}
}
                      
                      
                    M. G. Amaglobeli. Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 12-18. http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a1/
                  
                