Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 12-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The category of exponential $\mathrm{MR}$-groups for an associative ring $\mathrm R$ with unity is defined in [1]. The present paper is devoted to the study of partial exponential $\mathrm{MR}$-groups which are isomorphically embedded in their tensor completion over the ring $\mathrm R$. The key to its understanding is the notion of tensor completion introduced in [1]. As a consequence, the description of free $\mathrm{MR}$-groups in the language of group constructions is obtained.
@article{VMJ_2016_18_2_a1,
     author = {M. G. Amaglobeli},
     title = {Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {12--18},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a1/}
}
TY  - JOUR
AU  - M. G. Amaglobeli
TI  - Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 12
EP  - 18
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a1/
LA  - ru
ID  - VMJ_2016_18_2_a1
ER  - 
%0 Journal Article
%A M. G. Amaglobeli
%T Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 12-18
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a1/
%G ru
%F VMJ_2016_18_2_a1
M. G. Amaglobeli. Category of $\mathrm{MR}$-groups over a~ring~$\mathrm R$. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 12-18. http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a1/