Paired integral operators with homogeneous-difference kernels
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the paired multidimensional integral operators with homogeneous-difference kernels, acting in $L_p$-spaces. For these operators the symbol is defined. In term of the symbol the necessary and sufficient conditions for the invertibility of operators are obtained.
@article{VMJ_2016_18_2_a0,
     author = {O. G. Avsyankin},
     title = {Paired integral operators with homogeneous-difference kernels},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--11},
     year = {2016},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - Paired integral operators with homogeneous-difference kernels
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 3
EP  - 11
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a0/
LA  - ru
ID  - VMJ_2016_18_2_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T Paired integral operators with homogeneous-difference kernels
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 3-11
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a0/
%G ru
%F VMJ_2016_18_2_a0
O. G. Avsyankin. Paired integral operators with homogeneous-difference kernels. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 2, pp. 3-11. http://geodesic.mathdoc.fr/item/VMJ_2016_18_2_a0/

[1] Karapetiants N., Samko S., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR | Zbl

[2] Avsyankin O. G., “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR | Zbl

[3] Avsyankin O. G., Peretyatkin F. G., “Ob ogranichennosti i kompaktnosti mnogomernykh integralnykh operatorov s odnorodnymi yadrami”, Izv. vuzov. Matematika, 2013, no. 11, 64–68 | MR | Zbl

[4] Avsyankin O. G., “Proektsionnyi metod dlya integralnykh operatorov s odnorodnymi yadrami, vozmuschennykh odnostoronnimi multiplikativnymi sdvigami”, Izv. vuzov. Matematika, 2015, no. 2, 10–17 | MR | Zbl

[5] Avsyankin O. G., “Mnogomernye integralnye operatory s odnorodno-raznostnymi yadrami”, Dif. uravneniya, 48:1 (2012), 64–69 | MR | Zbl

[6] Avsyankin O. G., “Ob algebre mnogomernykh integralnykh operatorov s odnorodno-raznostnymi yadrami”, Mat. zametki, 95:2 (2014), 163–169 | DOI | MR | Zbl

[7] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov n/D, 1984, 208 pp. | MR

[8] Simonenko I. B., “Operatory tipa svertki v konusakh”, Mat. sbornik, 74(116):2 (1967), 298–313 | MR | Zbl