Characterization and multiplicative representation of homogeneous disjointness preserving polynomials
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 51-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $E$ and $F$ be vector lattices and $P\colon E\to F$ an order bounded orthogonally additive (i.e. $|x|\wedge|y|=0$ implies $P(x+y)=P(x)+P(y)$ for all $x,y\in E$) $s$-homogeneous polynomial. $P$ is said to be disjointness preserving if its corresponding symmetric $s$-linear operator from $E^s$ to $F$ is disjointness preserving in each variable. The main results of the paper read as follows: Theorem 3.9. The following are equivalent: (1) $P$ is disjointness preserving; (2) $\hat d^nP(x)(y)=0$ and $Px\perp Py$ for all $x,y\in E$, $x\perp y$, and $1\leq n; (3) $P$ is orthogonally additive and $x\perp y$ implies $Px\perp Py$ for all $x,y\in E$; (4) {\it there exist a vector lattice $G$ and lattice homomorphisms $S_1,S_2\colon E \to G$ such that $G^{s\scriptscriptstyle\odot}\subset F$, $S_1(E)\perp S_2(E)$, and $Px=(S_1x)^{s\scriptscriptstyle\odot}-(S_2x)^{s\scriptscriptstyle\odot}$ for all $x\in E$}; (5) {\it there exists an order bounded disjointness preserving linear operator $T:E^{s\scriptscriptstyle\odot}\to F$ such that $Px=T(x^{s\scriptscriptstyle\odot})$ for all $x\in E$}. Theorem 4.7. {\it Let $E$ and $F$ be Dedekind complete vector lattices. There exists a partition of unity $(\rho_\xi)_{\xi\in\Xi}$ in the Boolean algebra of band projections $\mathfrak P(F)$ and a family $(e_\xi)_{\xi\in\Xi}$ in $E_+$ such that $P(x)=o$-$\sum_{\xi\in\Xi}W\circ\rho_\xi S(x/e_\xi)^{s\scriptscriptstyle\odot}$ $(x\in E)$, where $S$ is the shift of $P$ and $W\colon\mathscr F\to\mathscr F$ is the orthomorphism multiplication by $o$-$\sum_{\xi\in\Xi}\rho_\xi P(e_\xi)$.
@article{VMJ_2016_18_1_a6,
     author = {Z. A. Kusraeva},
     title = {Characterization and multiplicative representation of homogeneous disjointness preserving polynomials},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {51--62},
     year = {2016},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a6/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Characterization and multiplicative representation of homogeneous disjointness preserving polynomials
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 51
EP  - 62
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a6/
LA  - ru
ID  - VMJ_2016_18_1_a6
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Characterization and multiplicative representation of homogeneous disjointness preserving polynomials
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 51-62
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a6/
%G ru
%F VMJ_2016_18_1_a6
Z. A. Kusraeva. Characterization and multiplicative representation of homogeneous disjointness preserving polynomials. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 51-62. http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a6/

[1] Abramovich Yu. A., Veksler A. I., Koldunov A. V., “Ob operatorakh, sokhranyayuschikh diz'yunktnost”, Dokl. AN SSSR, 248:5 (1979), 1033–1036 | MR | Zbl

[2] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Izd-vo IM SO RAN, Novosibirsk, 1995, 63–211 | MR

[3] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003, 619 pp. | MR

[4] Kusraev A. G., Tabuev S. N., “O bilineinykh operatorakh, sokhranyayuschikh diz'yunktnost”, Vladikavk. mat. zhurn., 6:1 (2004), 58–70 | MR | Zbl

[5] Kusraev A. G., Tabuev S. N., “O multiplikativnom predstavlenii bilineinykh operatorov”, Sib. mat. zhurn., 49:2 (2008), 357–366 | MR | Zbl

[6] Kusraeva Z. A., “O predstavlenii ortogonalno additivnykh polinomov”, Sib. mat. zhurn., 52:2 (2011), 315–325 | MR | Zbl

[7] Kusraeva Z. A., “O prodolzhenii ortogonalno additivnykh regulyarnykh polinomov”, Vladikavk. mat. zhurn., 13:4 (2011), 28–34 | MR | Zbl

[8] Kusraeva Z. A., “Odnorodnye ortogonalno additivnye polinomy v vektornykh reshetkakh”, Mat. zametki, 91:5 (2012), 704–710 | DOI | MR | Zbl

[9] Abramovich Yu. A., “Multiplicative representation of disjointness preserving operators”, Indag. Math. N.S., 45:3 (1983), 265–279 | DOI | MR | Zbl

[10] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, N.Y., 1985, xvi+367 pp. | MR | Zbl

[11] Benyamini Y., Lassalle S., Llavona J. G., “Homogeneous orthogonally additive polynomials on Banach lattices”, Bull. London Math. Soc., 38:3 (2006), 459–469 | DOI | MR | Zbl

[12] Boulabiar K., “Products in almost $f$-algebras”, Comment. Math. Univ. Carolin., 41:4 (2000), 747–759 | MR | Zbl

[13] Boulabiar K., Buskes G., “Vector lattice powers: $f$-algebras and functional calculus”, Comm. Algebra, 34:4 (2006), 1435–1442 | DOI | MR | Zbl

[14] Bu Q., Buskes G., “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388 (2011), 845–862 | MR

[15] Buskes G., Kusraev A., “Extension and representation of orthoregular maps”, Vladikavkaz Math. J., 9:1 (2007), 16–29 | MR | Zbl

[16] Buskes G., van Rooij A., “Almost $f$-algebras: commutativity and the Cauchy–Schwarz inequality”, Positivity, 4:3 (2000), 227–231 | DOI | MR | Zbl

[17] Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999, xv+543 pp. | MR | Zbl

[18] Gutman A. E., “Disjointness preserving operators”, Vector Lattices and Integral Operators, ed. S. S. Kutateladze, Kluwer, Dordrecht etc., 1996, 361–454

[19] Ibort A., Linares P., Llavona J. G., A representation theorem for orthogonally additive polynomials on Riesz spaces, 2012, arXiv: 1203.2379vl[math.Fa]

[20] Kusraev A. G., “A Radon–Nikodým type theorem for orthosymmetric bilinear operators”, Positivity, 14:2 (2010), 225–238 | DOI | MR | Zbl

[21] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis, Selected Topics, Trends in Science: The South of Russia. Math. Monogr., 6, SMI VSC RAS, Vladikavkaz, 2014, iv+400 pp.

[22] Linares P., Orthogonally Additive Polynomials and Applications, PhD Thesis, Universidad Complutense de Madrid, 2009

[23] Loane J., Polynomials on Riesz Spaces, PhD Thesis, National Univ. of Ireland, Galway, 2008

[24] Quinn J., “Intermediate Riesz spaces”, Pacific J. of Math., 56:1 (1975), 225–263 | DOI | MR | Zbl

[25] Schep A. R., “Factorization of positive multilinear maps”, Illinois J. Math., 28:4 (1984), 579–591 | MR | Zbl

[26] Toumi M. A., “Orthogonally additive polynomials on Dedekind $\sigma$-complete vector lattices”, Proc. Irish Royal Academy, 110 (2011), 83–94 | DOI | MR