$\xi$-Lie derivations on algebras of locally measurable operators
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 26-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $\xi$-Lie derivations on algebras of locally measurable operators $LS(M)$, where $M$ is a von Neumann algebra without central summands of type $I_1$.
@article{VMJ_2016_18_1_a3,
     author = {I. M. Juraev},
     title = {$\xi${-Lie} derivations on algebras of locally measurable operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {26--35},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a3/}
}
TY  - JOUR
AU  - I. M. Juraev
TI  - $\xi$-Lie derivations on algebras of locally measurable operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 26
EP  - 35
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a3/
LA  - ru
ID  - VMJ_2016_18_1_a3
ER  - 
%0 Journal Article
%A I. M. Juraev
%T $\xi$-Lie derivations on algebras of locally measurable operators
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 26-35
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a3/
%G ru
%F VMJ_2016_18_1_a3
I. M. Juraev. $\xi$-Lie derivations on algebras of locally measurable operators. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 26-35. http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a3/