Two measure-free versions of the Brezis--Lieb lemma
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 21-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We present two measure-free versions of the Brezis–Lieb lemma for $uo$-convergence in Riesz spaces.
@article{VMJ_2016_18_1_a2,
     author = {E. Yu. Emelyanov and M. A. A. Marabeh},
     title = {Two measure-free versions of the {Brezis--Lieb} lemma},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {21--25},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/}
}
TY  - JOUR
AU  - E. Yu. Emelyanov
AU  - M. A. A. Marabeh
TI  - Two measure-free versions of the Brezis--Lieb lemma
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 21
EP  - 25
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/
LA  - en
ID  - VMJ_2016_18_1_a2
ER  - 
%0 Journal Article
%A E. Yu. Emelyanov
%A M. A. A. Marabeh
%T Two measure-free versions of the Brezis--Lieb lemma
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 21-25
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/
%G en
%F VMJ_2016_18_1_a2
E. Yu. Emelyanov; M. A. A. Marabeh. Two measure-free versions of the Brezis--Lieb lemma. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 21-25. http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/