Two measure-free versions of the Brezis–Lieb lemma
Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present two measure-free versions of the Brezis–Lieb lemma for $uo$-convergence in Riesz spaces.
@article{VMJ_2016_18_1_a2,
     author = {E. Yu. Emelyanov and M. A. A. Marabeh},
     title = {Two measure-free versions of the {Brezis{\textendash}Lieb} lemma},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {21--25},
     year = {2016},
     volume = {18},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/}
}
TY  - JOUR
AU  - E. Yu. Emelyanov
AU  - M. A. A. Marabeh
TI  - Two measure-free versions of the Brezis–Lieb lemma
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2016
SP  - 21
EP  - 25
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/
LA  - en
ID  - VMJ_2016_18_1_a2
ER  - 
%0 Journal Article
%A E. Yu. Emelyanov
%A M. A. A. Marabeh
%T Two measure-free versions of the Brezis–Lieb lemma
%J Vladikavkazskij matematičeskij žurnal
%D 2016
%P 21-25
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/
%G en
%F VMJ_2016_18_1_a2
E. Yu. Emelyanov; M. A. A. Marabeh. Two measure-free versions of the Brezis–Lieb lemma. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 21-25. http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/

[1] Aliprantis C. D., Burkinshaw O., Positive operators, Pure and Appl. Math., 119, Acad. Press, Inc., Orlando, Florida, 1985, xvi+367 pp. | MR | Zbl

[2] Brezis H., Lieb E., “A relation between pointwise convergence of functions and convergence of functionals”, Proc. Amer. Math. Soc., 88:3 (1983), 486–490 | DOI | MR | Zbl

[3] Brezis H., Nirenberg L., “Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents”, Comm. Pure Appl. Math., 36:4 (1983), 437–477 | DOI | MR | Zbl

[4] Gao N., Troitsky V., Xanthos F., Uo-convergence and its applications to Cesàro means in Banach lattices, Preprint, arXiv: 1509.07914

[5] Gao N., Xanthos F., “Unbounded order convergence and application to martingales without probability”, J. Math. Anal. Appl., 415:2 (2014), 931–947 | DOI | MR | Zbl

[6] Lieb E., “Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities”, Ann. of Math., 118:2 (1983), 349–374 | DOI | MR | Zbl

[7] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. I, North-Holland Publ. Comp., Amsterdam, 1971, viii+514 pp. | MR | Zbl

[8] Zaanen A. C., Riesz Spaces, v. II, North-Holland Mathematical Library, North-Holland Publ. Comp., Amsterdam, 1983, xi+720 pp. | MR | Zbl