@article{VMJ_2016_18_1_a2,
author = {E. Yu. Emelyanov and M. A. A. Marabeh},
title = {Two measure-free versions of the {Brezis{\textendash}Lieb} lemma},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {21--25},
year = {2016},
volume = {18},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/}
}
E. Yu. Emelyanov; M. A. A. Marabeh. Two measure-free versions of the Brezis–Lieb lemma. Vladikavkazskij matematičeskij žurnal, Tome 18 (2016) no. 1, pp. 21-25. http://geodesic.mathdoc.fr/item/VMJ_2016_18_1_a2/
[1] Aliprantis C. D., Burkinshaw O., Positive operators, Pure and Appl. Math., 119, Acad. Press, Inc., Orlando, Florida, 1985, xvi+367 pp. | MR | Zbl
[2] Brezis H., Lieb E., “A relation between pointwise convergence of functions and convergence of functionals”, Proc. Amer. Math. Soc., 88:3 (1983), 486–490 | DOI | MR | Zbl
[3] Brezis H., Nirenberg L., “Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents”, Comm. Pure Appl. Math., 36:4 (1983), 437–477 | DOI | MR | Zbl
[4] Gao N., Troitsky V., Xanthos F., Uo-convergence and its applications to Cesàro means in Banach lattices, Preprint, arXiv: 1509.07914
[5] Gao N., Xanthos F., “Unbounded order convergence and application to martingales without probability”, J. Math. Anal. Appl., 415:2 (2014), 931–947 | DOI | MR | Zbl
[6] Lieb E., “Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities”, Ann. of Math., 118:2 (1983), 349–374 | DOI | MR | Zbl
[7] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. I, North-Holland Publ. Comp., Amsterdam, 1971, viii+514 pp. | MR | Zbl
[8] Zaanen A. C., Riesz Spaces, v. II, North-Holland Mathematical Library, North-Holland Publ. Comp., Amsterdam, 1983, xi+720 pp. | MR | Zbl