Factorization of cone $(\mathbb B,p)$-summing operators
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 75-79
Cet article a éte moissonné depuis la source Math-Net.Ru
For a complete Boolean algebra $\mathbb B$ and a real $p\geq1$ we introduce the class of cone $(\mathbb B,p)$-summing operators and prove a factorization result for this class.
@article{VMJ_2015_17_4_a6,
author = {B. B. Tasoev},
title = {Factorization of cone $(\mathbb B,p)$-summing operators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {75--79},
year = {2015},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a6/}
}
B. B. Tasoev. Factorization of cone $(\mathbb B,p)$-summing operators. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 75-79. http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a6/
[1] Kusraev A. G., Boolean Valued Analysis Approach to Injective Banach Lattices, Preprint No 1, SMI VSC RAS, Vladikavkaz, 2011, 28 pp.
[2] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003, 619 pp. | MR
[3] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, 395 pp. | MR | Zbl
[4] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis: Selected Topics, Trends in Science: The South of Russia. Math. Monogr., 6, SMI VSC RAS, Vladikavkaz, 2014, iv+400 pp.
[5] Kusraev A. G., Boolean Valued Analysis Approach to Injective Banach Lattices. II, Preprint No 1, SMI VSC RAS, Vladikavkaz, 2012, 16 pp.