On a~nonclassical interpretation of the four-dimensional Goursat problem for one hyberbolic equation
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 59-66
Voir la notice de l'article provenant de la source Math-Net.Ru
A homeomorphism between certain pairs of Banach space is revealed in the study of the four-dimensional Goursat problem for one differential equation with leading partial derivative of the sixth order $D_1D_2D_3^2D_4^2$ with discontinuous coefficients ($L_p$-coefficients) by reducing this problem to an equivalent integral equation.
@article{VMJ_2015_17_4_a4,
author = {I. G. Mamedov},
title = {On a~nonclassical interpretation of the four-dimensional {Goursat} problem for one hyberbolic equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {59--66},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a4/}
}
TY - JOUR AU - I. G. Mamedov TI - On a~nonclassical interpretation of the four-dimensional Goursat problem for one hyberbolic equation JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 59 EP - 66 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a4/ LA - ru ID - VMJ_2015_17_4_a4 ER -
I. G. Mamedov. On a~nonclassical interpretation of the four-dimensional Goursat problem for one hyberbolic equation. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 59-66. http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a4/