@article{VMJ_2015_17_4_a3,
author = {Kh. Zennir and S. Zitouni},
title = {On the absence of solutions to damped system of nonlinear wave equations of {Kirchhoff-type}},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {44--58},
year = {2015},
volume = {17},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a3/}
}
TY - JOUR AU - Kh. Zennir AU - S. Zitouni TI - On the absence of solutions to damped system of nonlinear wave equations of Kirchhoff-type JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 44 EP - 58 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a3/ LA - en ID - VMJ_2015_17_4_a3 ER -
Kh. Zennir; S. Zitouni. On the absence of solutions to damped system of nonlinear wave equations of Kirchhoff-type. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 44-58. http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a3/
[1] Abdelli M., Benaissa A., “Energy decay of solutions of degenerate Kirchhoff equation with a weak nonlinear dissipation”, Nonlinear Analysis, 69 (2008), 1999–2008 | DOI | MR | Zbl
[2] Agre K., Rammaha M. A., “Systems of nonlinear wave equations with damping and source terms”, Diff. Int. Equ., 19 (2007), 1235–1270 | MR
[3] Benaissa A., Ouchenane D., Zennir Kh., “Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms”, Nonlinear Studies, 19:4 (2012), 523–535 | MR | Zbl
[4] Benaissa A., Messaoudi S. A., “Blow up of solutions of a nonlinear wave equation”, J. Appl. Math., 2:2 (2002), 105–108 | DOI | MR | Zbl
[5] Benaissa A., Messaoudi S. A., “Blow up of solutions for Kirchhoff equation of $q$-Laplacien type with nonlinear dissipation”, Colloq. Math., 94:1 (2002), 103–109 | DOI | MR | Zbl
[6] Benaissa A., Messaoudi S. A., “Blow up of solutions of a quasilinear wave equation with nonlinear dissipation”, J. Part. Diff. Eq., 15:3 (2002), 61–67 | MR | Zbl
[7] Erhan Piskin, Necat Polat, “Uniform decay and blow up of solutions for a system of nonlinear higher-order Kirchhoff-type equations with damping and source”, Cont. Anal. Appl. Math., 1:2 (2013), 181–199 | Zbl
[8] Georgiev V., Todorova G., “Existence of a solution of the wave equation with nonlinear damping and source term”, J. Diff. Eq., 109 (1994), 295–308 | DOI | MR | Zbl
[9] Hrusa W. J., Renardy M., “A model equation for viscoelasticity with a strongly singular kernel”, SIAM. J. Math. Anal., 19:2 (1988), 257–259 | DOI | MR | Zbl
[10] Kafini M., Messaoudi S., “A blow-up result in a Cauchy viscoelastic problem”, Appl. Math. Letters, 21 (2008), 549–553 | DOI | MR | Zbl
[11] Kirchhoff G., Vorlesungen uber Mechanik, 3rd ed., Teubner, Leipzig, 1983
[12] Levine H. A., Serrin J., “Global nonexistence theorems for quasilinear evolution equations with dissipation”, Archive for Rational Mechanics and Analysis, 37:4 (1997), 341–361 | DOI | MR
[13] Levine H. A., Park S. R., Serrin J., “Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation”, JMAA, 228:1 (1998), 181–205 | MR | Zbl
[14] Gao Q., Li F., Wang Y., “Blow up of the solution for higher order Kirchhoff type equations with nonlinear dissipation”, Cent. Eur. J. Math., 9:3 (2011), 686–698 | DOI | MR | Zbl
[15] Messaoudi S., “Blow up and global existence in a nonlinear viscoelastic wave equation”, Maths Nachr., 260 (2003), 58–66 | DOI | MR | Zbl
[16] Messaoudi S. A., “On the control of solutions of a viscoelastic equation”, Journal of the Franklin Institute, 344 (2007), 765–776 | DOI | MR | Zbl
[17] Messaoudi S. A., Said-Houari B., “Global non-existence of solutions of a class of wave equations with non-linear damping and source terms”, Math. Meth. Appl. Sci., 27 (2004), 1687–1696 | DOI | MR | Zbl
[18] Messaoudi S. A., Said-Houari B., “A blow-up result for a higher-order non-linear Kirchhoff -type hyperbolic equation”, Appl. Math. Letters, 20 (2007), 866–871 | DOI | MR | Zbl
[19] Messaoudi S. A., Said-Houari B., “Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms”, J. Math. Anal. Appl., 365 (2010), 277–287 | DOI | MR | Zbl
[20] Ouchenane D., Zennir Kh., Bayoud M., “Global nonexistence of solutions of a system of nonlinear viscoelastic wave equations with degenerate damping and source terms”, Ukrainian Math. J., 65:7 (2013), 645–669 | MR
[21] Pohozaev S. I., “On a class of quasiunear hyperbolic equations”, Mat. Sbornik, 96(138):1 (1975), 152–166 | MR | Zbl
[22] Rammaha M. A., Sawanya Sakuntasathien, “Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms”, Nonlinear Analysis, 72 (2010), 2658–2683 | DOI | MR | Zbl
[23] Rammaha M. A., Sawanya Sakuntasathien, “Critically and degenerately damped systems of nonlinear wave equations with source terms”, Appl. Anal., 72 (2010), 1201–1227 | DOI | MR
[24] Reed M., Abstract Non Linear Wave Equations, Lect. Notes in Math., 507, Springer-Verlag, Berlin, 1976 | MR | Zbl
[25] Said-Houari B., “Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms”, Dif. Int. Equ., 23:1–2 (2010), 79–92 | MR | Zbl
[26] Todorova G., “Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms”, Comptes Rendus de l'académie des Sciences Sér. 1, 326:2 (1998), 191–196 | MR | Zbl
[27] Todorova G., “Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms”, JMAA, 239:2 (1999), 213–226 | MR | Zbl
[28] Vitillaro E., “Global nonexistence theorems for a class of evolution equations with dissipative”, Archive for Rational Mechanics and Analysis, 149:2 (1999), 155–182 | DOI | MR | Zbl
[29] Yang Z., “Blow up of solutions for a class of nonlinear evolution equations with nonlinear damping and source term”, Math. Meth. Ap. Sc., 25:10 (2002), 825–833 | DOI | MR | Zbl
[30] Zennir Kh., “Growth of solutions with positive initial energy to system of degeneratly damped wave equations with memory”, Lobachevskii J. of Math., 35:2 (2014), 147–156 | DOI | MR | Zbl