Elementary transvections in the overgroups of a~non-split maximal torus
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 11-17

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of the general linear group $GL(n,k)$ is rich in transvections if $H$ contains elementary transvections $t_{ij}(\alpha)$ at all positions $(i,j)$, $i\neq j$. In this paper we show that if a subgroup $H$ contains a non-split maximal torus and elementary transvection in one position, than $H$ is rich in transvections. It is also proved that if a subgroup $H$ contains a cyclic permutation of order $n$ and elementary transvection at position $(i,j)$ such that numbers $i-j$ and $n$ are coprime, then $H$ is rich in transvections.
@article{VMJ_2015_17_4_a1,
     author = {R. Y. Dryaeva and V. A. Koibaev},
     title = {Elementary transvections in the overgroups of a~non-split maximal torus},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--17},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a1/}
}
TY  - JOUR
AU  - R. Y. Dryaeva
AU  - V. A. Koibaev
TI  - Elementary transvections in the overgroups of a~non-split maximal torus
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 11
EP  - 17
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a1/
LA  - ru
ID  - VMJ_2015_17_4_a1
ER  - 
%0 Journal Article
%A R. Y. Dryaeva
%A V. A. Koibaev
%T Elementary transvections in the overgroups of a~non-split maximal torus
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 11-17
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a1/
%G ru
%F VMJ_2015_17_4_a1
R. Y. Dryaeva; V. A. Koibaev. Elementary transvections in the overgroups of a~non-split maximal torus. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 11-17. http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a1/