Elementary transvections in the overgroups of a~non-split maximal torus
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 11-17
Voir la notice de l'article provenant de la source Math-Net.Ru
A subgroup $H$ of the general linear group $GL(n,k)$ is rich in transvections if $H$ contains elementary transvections $t_{ij}(\alpha)$ at all positions $(i,j)$, $i\neq j$. In this paper we show that if a subgroup $H$ contains a non-split maximal torus and elementary transvection in one position, than $H$ is rich in transvections. It is also proved that if a subgroup $H$ contains a cyclic permutation of order $n$ and elementary transvection at position $(i,j)$ such that numbers $i-j$ and $n$ are coprime, then $H$ is rich in transvections.
@article{VMJ_2015_17_4_a1,
author = {R. Y. Dryaeva and V. A. Koibaev},
title = {Elementary transvections in the overgroups of a~non-split maximal torus},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {11--17},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a1/}
}
TY - JOUR AU - R. Y. Dryaeva AU - V. A. Koibaev TI - Elementary transvections in the overgroups of a~non-split maximal torus JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 11 EP - 17 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a1/ LA - ru ID - VMJ_2015_17_4_a1 ER -
R. Y. Dryaeva; V. A. Koibaev. Elementary transvections in the overgroups of a~non-split maximal torus. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 11-17. http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a1/