Some residual properties of polycyclic groups and split extensions
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for every finite set $\pi$ of primes there exists a polycyclic group which is a residually finite $p$-group if and only if the number $p$ belongs to the set $\pi$.
@article{VMJ_2015_17_4_a0,
     author = {D. N. Azarov},
     title = {Some residual properties of polycyclic groups and split extensions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Some residual properties of polycyclic groups and split extensions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 3
EP  - 10
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a0/
LA  - ru
ID  - VMJ_2015_17_4_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Some residual properties of polycyclic groups and split extensions
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 3-10
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a0/
%G ru
%F VMJ_2015_17_4_a0
D. N. Azarov. Some residual properties of polycyclic groups and split extensions. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 4, pp. 3-10. http://geodesic.mathdoc.fr/item/VMJ_2015_17_4_a0/