@article{VMJ_2015_17_3_a8,
author = {S. M. Umarkhadzhiev},
title = {Denseness of the {Lizorkin} space in grand {Lebesgue} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {75--83},
year = {2015},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a8/}
}
S. M. Umarkhadzhiev. Denseness of the Lizorkin space in grand Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 75-83. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a8/
[1] Umarkhadzhiev S. M., “Ogranichennost lineinykh operatorov v vesovykh obobschennykh grand-prostranstvakh Lebega”, Vestn. AN Chechenskoi respubliki, 2:19 (2013), 5–9
[2] Umarkhadzhiev S. M., “Obobschenie ponyatiya grand-prostranstva Lebega”, Izv. vuzov. Matematika, 4 (2014), 42–51 | MR
[3] Umarkhadzhiev S. M., “Ogranichennost potentsiala Rissa v vesovykh obobschennykh grand-prostranstvakh Lebega”, Vladikavk. mat. zhurn., 16:2 (2014), 62–68 | Zbl
[4] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-n/D., 1984, 208 pp. | MR
[5] Di Fratta G., Fiorenza A., “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Analysis: Theory, Methods and Applications, 70:7 (2009), 2582–2592 | DOI | MR | Zbl
[6] Fiorenza A., “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl
[7] Fiorenza A., Gupta B., Jain P., “The maximal theorem in weighted grand Lebesgue spaces”, Stud. Math., 188:2 (2008), 123–133 | DOI | MR | Zbl
[8] Fiorenza A., Karadzhov G. E., “Grand and small Lebesgue spaces and their analogs”, J. Anal. and its Appl., 23:4 (2004), 657–681 | MR | Zbl
[9] Fiorenza A., Rakotoson J. M., “Petits espaces de Lebesgue et leurs applications”, C. R. Acad. Sci. Paris Ser. I, 333 (2001), 1–4 | DOI
[10] Greco L., Iwaniec T., Sbordone C., “Inverting the $p$-harmonic operator”, Manuscripta Math., 92 (1997), 249–258 | DOI | MR | Zbl
[11] Iwaniec T., Sbordone C., “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119 (1992), 129–143 | DOI | MR | Zbl
[12] Kokilashvili V., “Weighted problems for operators of harmonic analysis in some Banach function spaces”, Lecture course of Summer School and Workshop “Harmonic Analysis and Related Topics”» (HART2010), Lisbon, [cited 2010 June 21–25] URL: http://www.math.ist.utl.pt/~hart2010/kokilashvili.pdf
[13] Kokilashvili V., “Boundedness criterion for the Cauchy singular integraloperator in weighted grand Lebesgue spaces and application to the Riemannproblem”, Proc. A. Razmadze Math. Inst., 151 (2009), 129–133 | MR | Zbl
[14] Kokilashvili V., “The Riemann boundary value problem for analytic functions in the frame of grand $L^p$ spaces”, Bull. Georgian Nat. Acad. Sci., 4:1 (2010), 5–7 | MR | Zbl
[15] Kokilashvili V., Meskhi A., “A note on the boundedness of the Hilberttransform in weighted grand Lebesgue spaces”, Georgian Math. J., 16:3 (2009), 547–551 | MR | Zbl
[16] Samko S. G., Hypersingular Integrals and their Applications, Ser. Analytical Methods and Special Functions, 5, Taylor Francis, London–N.Y., 2002, xvii+358 pp. | MR | Zbl
[17] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2011), 67–84 | MR | Zbl
[18] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone spaces on sets which may have infinite measure: addendum”, Azerb. J. Math., 1:2 (2011), 143–144 | MR | Zbl
[19] Umarkhadzhiev S. M., “The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces”, Operator theory, operator algebras and applications, Operator Theory: Advances and Applications, 242, Basel, Birkhäuser, 2014, 363–373 | DOI | MR | Zbl
[20] Umarkhadzhiev S. M., “A generalization concept of grand Lebesgue space”, Russian Math. (Iz. VUZ), 58:4 (2014), 35–43 | MR | Zbl