Estimates of moduli of curve families for mappings with weighted bounded $(p,q)$-distortion
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 65-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We state the analogs of Poletskiĭ's and Väisälä's inequalities for mappings with $(\theta,1)$-weighted bounded $(p,q)$-distortion without the additional assumption that the mappings enjoy Lusin's $\mathcal N$-property.
@article{VMJ_2015_17_3_a7,
     author = {M. V. Tryamkin},
     title = {Estimates of moduli of curve families for mappings with weighted bounded $(p,q)$-distortion},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {65--74},
     year = {2015},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a7/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - Estimates of moduli of curve families for mappings with weighted bounded $(p,q)$-distortion
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 65
EP  - 74
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a7/
LA  - ru
ID  - VMJ_2015_17_3_a7
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T Estimates of moduli of curve families for mappings with weighted bounded $(p,q)$-distortion
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 65-74
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a7/
%G ru
%F VMJ_2015_17_3_a7
M. V. Tryamkin. Estimates of moduli of curve families for mappings with weighted bounded $(p,q)$-distortion. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 65-74. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a7/

[1] Ahlfors L., Beurling A., “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[2] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[3] Soviet Math. Dokl., 1 (1960), 165–168 | MR | Zbl

[4] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Translation of Math. Monogr., 73, American Math. Soc., Providence, RI, 1989 | MR | Zbl

[5] Math. USSR Sb., 12:2 (1970), 260–270 | DOI | MR | Zbl

[6] Väisälä J., “Modulus and capacity inequalities for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. AI, 509 (1972), 1–14 | MR

[7] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sc. Fenn. Ser. AI, 448 (1969), 5–40 | MR

[8] Martio O., “A capacity inequality for quasiregular mappings”, Ann. Sc. Fenn. Ser. AI, 474 (1970), 1–18 | MR

[9] Math. USSR Sb., 21:2 (1973), 240–254 | DOI | MR | Zbl

[10] Rickman S., Quasiregular Mappings, Springer-Verlag, Berlin a.o., 1993 | MR | Zbl

[11] Heinonen J., Koskela P., “Quasiconformal maps in metric spaces with controlled geometry”, Acta Math., 181 (1998), 1–41 | DOI | MR

[12] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer, N.Y., 2009 | MR | Zbl

[13] Troyanov M., Vodop'yanov S. K., “Liouville type theorems for mappings with bounded (co)-distortion”, Ann. Inst. Fourier, 52:6 (2002), 1753–1784 | DOI | MR | Zbl

[14] Vodop'yanov S. K., Ukhlov A., “Mappings with bounded $(P,Q)$-distortion on Carnot groups”, Bull. Sci. Math., 134:6 (2010), 605–634 | DOI | MR | Zbl

[15] Koskela P., Onninen J., “Mappings of finite distortion: Capacity and modulus inequalities”, J. Reine Angew. Math., 599 (2006), 1–26 | DOI | MR | Zbl

[16] Salimov R., Sevost'yanov E., “The Poletskii and Väisälä inequalities for the mappings with $(p,q)$-distortion”, Complex Variables and Elliptic Equations: An International J., 59:2 (2014), 217–231 | DOI | MR | Zbl

[17] Sevost'yanov E., About one modulus inequality of the Väisälä type, Preprint, 2013, arXiv: 1204.3810v4

[18] Baykin A. N., Vodop'yanov S. K., “Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded $(p,q)$-distortion”, Siberian Math. J., 56:2 (2015), 237–261 | DOI | MR | Zbl

[19] Dokl. Math., 89:2 (2014), 157–161 | DOI | MR | Zbl

[20] Dokl. Math., 78:3 (2008), 891–895 | DOI | MR | Zbl

[21] Dokl. Math., 84:2 (2011), 640–644 | DOI | MR | Zbl

[22] Vodop'yanov S. K., “Regularity of mappings inverse to Sobolev mappings”, Sb. Mathematics, 203:10 (2012), 1383–1410 | DOI | MR | Zbl

[23] Ponomarev S. P., “On the $N$-property of homeomorphisms of the class $W^1_p$”, Sibirsk. Mat. Zh., 28:2 (1987), 140–148 | MR | Zbl

[24] Tryamkin M. V., “Modulus inequalities for mappings with weighted bounded $(p,q)$-distortion”, Siberian Math. J., 56:6 (2015), 1114–1132 | DOI

[25] Väisälä J., Lectures on $n$-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin, 1971 | MR | Zbl