Approximative properties of the Chebyshev wavelet series of the second kind
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 56-64
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The wavelets and scaling functions based on Chebyshev polynomials and their zeros are introduced. The constructed system of functions is proved to be orthogonal. Using this system, an orthonormal basis in the space of square-integrable functions is built. Approximative properties of partial sums of corresponding wavelet series are investigated.
			
            
            
            
          
        
      @article{VMJ_2015_17_3_a6,
     author = {M. S. Sultanakhmedov},
     title = {Approximative properties of the {Chebyshev} wavelet series of the second kind},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a6/}
}
                      
                      
                    TY - JOUR AU - M. S. Sultanakhmedov TI - Approximative properties of the Chebyshev wavelet series of the second kind JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 56 EP - 64 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a6/ LA - ru ID - VMJ_2015_17_3_a6 ER -
M. S. Sultanakhmedov. Approximative properties of the Chebyshev wavelet series of the second kind. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 56-64. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a6/
