Approximative properties of the Chebyshev wavelet series of the second kind
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 56-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The wavelets and scaling functions based on Chebyshev polynomials and their zeros are introduced. The constructed system of functions is proved to be orthogonal. Using this system, an orthonormal basis in the space of square-integrable functions is built. Approximative properties of partial sums of corresponding wavelet series are investigated.
@article{VMJ_2015_17_3_a6,
     author = {M. S. Sultanakhmedov},
     title = {Approximative properties of the {Chebyshev} wavelet series of the second kind},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--64},
     year = {2015},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a6/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
TI  - Approximative properties of the Chebyshev wavelet series of the second kind
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 56
EP  - 64
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a6/
LA  - ru
ID  - VMJ_2015_17_3_a6
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%T Approximative properties of the Chebyshev wavelet series of the second kind
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 56-64
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a6/
%G ru
%F VMJ_2015_17_3_a6
M. S. Sultanakhmedov. Approximative properties of the Chebyshev wavelet series of the second kind. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 56-64. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a6/

[1] Chui C. K., Mhaskar H. N., “On Trigonometric wavelets”, Constructive Approximation, 9 (1993), 167–190 | DOI | MR | Zbl

[2] Kilgore T., Prestin J., “Polynomial wavelets on an interval”, Constructive Approximation, 12:1 (1996), 1–18 | DOI | MR

[3] Davis P. J., Interpolation and Approximation, Dover Publ. Inc., N.Y., 1973 | MR

[4] Fischer B., Prestin J., “Wavelet based on orthogonal polynomials”, Math. Comp., 66 (1997), 1593–1618 | DOI | MR | Zbl

[5] Fischer B., Themistoclakis W., “Orthogonal polynomial wavelets”, Numerical Algorithms, 30 (2002), 37–58 | DOI | MR | Zbl

[6] Capobiancho M. R., Themistoclakis W., “Interpolating polynomial wavelet on $[-1,1]$”, Advanced Comput. Math., 23 (2005), 353–374 | DOI | MR

[7] Dao-Qing Dai, Wei Lin, “Orthonormal polynomial wavelets on the interval”, Proc. Amer. Math. Soc., 134:5 (2005), 1383–1390 | DOI | MR

[8] Mohd F., Mohd I., “Orthogonal functions based on Chebyshev polynomials”, Matematika, 27:1 (2011), 97–107 | MR

[9] Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962, 500 pp.

[10] Yakhnin B. M., “O funktsiyakh Lebega razlozhenii v ryady po polinomam Yakobi dlya sluchaev $\alpha=\beta=\frac12$, $\alpha=\beta=-\frac12$, $\alpha=\frac12$, $\beta=-\frac12$”, Uspekhi mat. nauk, 13:6(84) (1958), 207–211 | MR | Zbl

[11] Yakhnin B. M., “Priblizhenie funktsii klassa $\mathrm{Lip}_\alpha$ chastnymi summami ryada Fure po mnogochlenam Chebysheva 2-go roda”, Izv. vuzov. Matematika, 1963, no. 1, 172–178 | MR | Zbl

[12] Bernshtein S. N., O mnogochlenakh, ortogonalnykh na konechnom intervale, Gos. nauch.-tekh. izd-vo Ukrainy, Kharkov, 1937, 128 pp.