A remark on absolutely convergent series in spaces of germs of analytic functions
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 53-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that each absolutely convergent series in the space of germs of all analytic functions on a some set $M\subset\mathbb C^N$ endowed with the projective topology converges absolutely in the Fréchet space of analytic functions on an open neighborhood of $M$. In particular, this allows us to remove the assumptions about the growth of exponents of exponential series, posed in some previous statements.
			
            
            
            
          
        
      @article{VMJ_2015_17_3_a5,
     author = {S. N. Melikhov},
     title = {A remark on absolutely convergent series in spaces of germs of analytic functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {53--55},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a5/}
}
                      
                      
                    TY - JOUR AU - S. N. Melikhov TI - A remark on absolutely convergent series in spaces of germs of analytic functions JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 53 EP - 55 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a5/ LA - ru ID - VMJ_2015_17_3_a5 ER -
S. N. Melikhov. A remark on absolutely convergent series in spaces of germs of analytic functions. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 53-55. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a5/
