Nonclosed Archimedean cones in locally convex spaces
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 36-43
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem is stated of describing the class of locally convex spaces which include nonclosed Archimedean cones. Some results are presented in the course of solving the problem.
@article{VMJ_2015_17_3_a3,
author = {A. E. Gutman and E. Yu. Emel'yanov and A. V. Matyukhin},
title = {Nonclosed {Archimedean} cones in locally convex spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {36--43},
year = {2015},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a3/}
}
TY - JOUR AU - A. E. Gutman AU - E. Yu. Emel'yanov AU - A. V. Matyukhin TI - Nonclosed Archimedean cones in locally convex spaces JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 36 EP - 43 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a3/ LA - ru ID - VMJ_2015_17_3_a3 ER -
A. E. Gutman; E. Yu. Emel'yanov; A. V. Matyukhin. Nonclosed Archimedean cones in locally convex spaces. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 36-43. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a3/
[1] Kutateladze S. S., Osnovy funktsionalnogo analiza, Izd-vo In-ta matematiki, Novosibirsk, 2006, xii+354 pp. | MR
[2] Aliprantis C. D., Tourky R., Cones and Duality, Graduate Stud. in Math., 84, Amer. Math. Soc., Providence, R.I., 2007, 296 pp. | MR | Zbl
[3] Wilansky A., Modern Methods in Topological Vector Spaces, McGraw-Hill, N.Y., 1978 | MR | Zbl
[4] Vulikh B. Z., Vvedenie v teoriyu konusov v normirovannykh prostranstvakh, Izd-vo KGU, Kalinin, 1977
[5] Kelley J. L., Namioka I., Linear Topological Spaces, Springer-Verlag, N.Y. etc., 1963 | MR