Nonclosed Archimedean cones in locally convex spaces
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 36-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem is stated of describing the class of locally convex spaces which include nonclosed Archimedean cones. Some results are presented in the course of solving the problem.
@article{VMJ_2015_17_3_a3,
     author = {A. E. Gutman and E. Yu. Emel'yanov and A. V. Matyukhin},
     title = {Nonclosed {Archimedean} cones in locally convex spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {36--43},
     year = {2015},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a3/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - E. Yu. Emel'yanov
AU  - A. V. Matyukhin
TI  - Nonclosed Archimedean cones in locally convex spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 36
EP  - 43
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a3/
LA  - ru
ID  - VMJ_2015_17_3_a3
ER  - 
%0 Journal Article
%A A. E. Gutman
%A E. Yu. Emel'yanov
%A A. V. Matyukhin
%T Nonclosed Archimedean cones in locally convex spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 36-43
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a3/
%G ru
%F VMJ_2015_17_3_a3
A. E. Gutman; E. Yu. Emel'yanov; A. V. Matyukhin. Nonclosed Archimedean cones in locally convex spaces. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 36-43. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a3/

[1] Kutateladze S. S., Osnovy funktsionalnogo analiza, Izd-vo In-ta matematiki, Novosibirsk, 2006, xii+354 pp. | MR

[2] Aliprantis C. D., Tourky R., Cones and Duality, Graduate Stud. in Math., 84, Amer. Math. Soc., Providence, R.I., 2007, 296 pp. | MR | Zbl

[3] Wilansky A., Modern Methods in Topological Vector Spaces, McGraw-Hill, N.Y., 1978 | MR | Zbl

[4] Vulikh B. Z., Vvedenie v teoriyu konusov v normirovannykh prostranstvakh, Izd-vo KGU, Kalinin, 1977

[5] Kelley J. L., Namioka I., Linear Topological Spaces, Springer-Verlag, N.Y. etc., 1963 | MR