Linear problem of integral geometry with smooth weight functions and perturbation
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 14-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study two problems of integral geometry in a strip on a family of line segments with a given weight function. In the first case, we consider the problem of reconstruction a function in a strip, if we know the integrals of the sought function on the family of line segments with a given weight function of a special kind. An analytical representation of a solution in the class of smooth finite functions is obtained and the uniqueness and existence theorems for a solution of the problem are proved. A stability estimate of solution in Sobolev spaces is presented, which implies its weakly ill-posedness. For the problem with perturbation the uniqueness theorem and stability estimate of solution were obtained. In the second case, we considered the problem of reconstructing a function given by integral data on the family of line segments with a weight function of exponential type. The uniqueness and existence theorems of a solution are proved. A simple representation of a solution in the class of smooth finite functions is constructed. Next, we consider the corresponding problem of integral geometry with perturbation. The uniqueness theorem in the class of smooth finite functions in a strip is proved and a stability estimate of a solution in Sobolev spaces is received.
@article{VMJ_2015_17_3_a1,
     author = {A. H. Begmatov and G. M. Djaykov},
     title = {Linear problem of integral geometry with smooth weight functions and perturbation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {14--22},
     year = {2015},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a1/}
}
TY  - JOUR
AU  - A. H. Begmatov
AU  - G. M. Djaykov
TI  - Linear problem of integral geometry with smooth weight functions and perturbation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 14
EP  - 22
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a1/
LA  - ru
ID  - VMJ_2015_17_3_a1
ER  - 
%0 Journal Article
%A A. H. Begmatov
%A G. M. Djaykov
%T Linear problem of integral geometry with smooth weight functions and perturbation
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 14-22
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a1/
%G ru
%F VMJ_2015_17_3_a1
A. H. Begmatov; G. M. Djaykov. Linear problem of integral geometry with smooth weight functions and perturbation. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 14-22. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a1/

[1] Lavrentev M. M., “Zadacha integralnoi geometrii na ploskosti s vozmuscheniem”, Sib. mat. zhurn., 37:4 (1996), 851–857 | MR | Zbl

[2] Begmatov A. Kh., “Zadacha integralnoi geometrii s vozmuscheniem v trekhmernom prostranstve”, Sib. mat. zhurn., 41:1 (2000), 3–14 | MR | Zbl

[3] Begmatov A. Kh., “Ob odnoi zadache integralnoi geometrii s vozmuscheniem v trekhmernom prostranstve”, Dokl. RAN, 371:2 (2000), 155–158 | MR | Zbl

[4] Begmatov A. Kh., “Ob odnom klasse zadach integralnoi geometrii na ploskosti”, Dokl. RAN, 331:3 (1993), 261–262 | Zbl

[5] Begmatov A. Kh., Petrova N. N., “Zadacha integralnoi geometrii s vozmuscheniem na krivykh ellipticheskogo tipa v polose”, Dokl. AN, 436:2 (2011), 151–154 | MR | Zbl

[6] Begmatov A. Kh., Dzhaikov G. M., “O vosstanovlenii funktsii po sfericheskim srednim”, Dokl. AN VSh RF, 1:20 (2013), 6–16

[7] Nowack R. L., “Tomography and the Herglotz–Wiechert inverse formulation”, Pure and Apllied Geophysics, 133 (1990), 305–315 | DOI

[8] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Per. s angl. yaz., Mir, M., 1990, 288 pp. | MR

[9] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.

[10] Begmatov Akr. Kh., “Zadacha integralnoi geometrii dlya semeistva konusov v $n$-mernom prostranstve”, Sib. mat. zhurn., 37:3 (1996), 500–505 | MR | Zbl

[11] Begmatov A. Kh., Pirimbetov A. O., Seidullaev A. K., “Zadachi integralnoi geometrii v polose na semeistvakh parabolicheskikh krivykh”, Dokl. AN VSh RF, 2:2(19) (2012), 6–15

[12] Begmatov A. H., Pirimbetov A. O., Seidullaev A. K., “Reconstruction stability in some problems of $X$-ray and seismic tomography”, Proceedings of IFOST-2012, v. 2, Tomsk Polytechnic University, 2012, 261–266

[13] Begmatov A. H., “Integral geometry problems of Volterra type”, Integral methods in science and engineering, Research Notes in Math. Ser., 418, eds. B. Bertram, C. Constanda, A. Struthers, Chapman Hall/CRC, Boka Raton, Fl, 2000, 46–50 | MR | Zbl

[14] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. | MR

[15] Begmatov A. Kh., “O edinstvennosti resheniya zadachi integralnoi geometrii volterroskogo tipa na ploskosti”, Dokl. AN, 427:4 (2009), 439–441 | MR | Zbl

[16] G. Krein (red.), Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp. | MR