On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 5-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We study topological structures of the sets $(0,1/2)^3\cap\Omega$ and $(0,1/2)^3\setminus\Omega$, where $\Omega$ is one special algebraic surface defined by a symmetric polynomial of degree $12$. These problems arise in studying of general properties of degenerate singular points of dynamical systems obtained from the normalized Ricci flow on generalized Wallach spaces. Our main goal is to prove the connectedness of $(0,1/2)^3\cap\Omega$ and to determine the number of connected components of $(0,1/2)^3\setminus\Omega$.
@article{VMJ_2015_17_3_a0,
     author = {N. A. Abiev},
     title = {On topological structure of some sets related to the normalized {Ricci} flow on generalized {Wallach} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/}
}
TY  - JOUR
AU  - N. A. Abiev
TI  - On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 5
EP  - 13
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/
LA  - en
ID  - VMJ_2015_17_3_a0
ER  - 
%0 Journal Article
%A N. A. Abiev
%T On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 5-13
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/
%G en
%F VMJ_2015_17_3_a0
N. A. Abiev. On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/