On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study topological structures of the sets $(0,1/2)^3\cap\Omega$ and $(0,1/2)^3\setminus\Omega$, where $\Omega$ is one special algebraic surface defined by a symmetric polynomial of degree $12$. These problems arise in studying of general properties of degenerate singular points of dynamical systems obtained from the normalized Ricci flow on generalized Wallach spaces. Our main goal is to prove the connectedness of $(0,1/2)^3\cap\Omega$ and to determine the number of connected components of $(0,1/2)^3\setminus\Omega$.
@article{VMJ_2015_17_3_a0,
     author = {N. A. Abiev},
     title = {On topological structure of some sets related to the normalized {Ricci} flow on generalized {Wallach} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--13},
     year = {2015},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/}
}
TY  - JOUR
AU  - N. A. Abiev
TI  - On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 5
EP  - 13
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/
LA  - en
ID  - VMJ_2015_17_3_a0
ER  - 
%0 Journal Article
%A N. A. Abiev
%T On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 5-13
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/
%G en
%F VMJ_2015_17_3_a0
N. A. Abiev. On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/

[1] Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G., Siasos P., “The dynamics of the Ricci flow on generalized Wallach spaces”, Differ. Geom. Appl., 35 (2014), 26–43 | DOI | MR | Zbl

[2] Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G., Siasos P., “The Ricci flow on some generalized Wallach spaces”, Geometry and its Applications, Springer Proceedings in Math. Statistics, 72, eds. V. Rovenski, P. Walczak, Springer, Switzerland, 2014, 3–37 | DOI | MR | Zbl

[3] Abiev N. A., Arvanitoyeorgos A., Nikonorov Yu. G., Siasos P., “The normalized Ricci flow on generalized Wallach spaces”, Stud. Math. Anal., Review of Science: The South of Russia, Math. Forum, 8, no. 1, SMI VSC RAS, Vladikavkaz, 2014, 25–42 (in Russian)

[4] Basu S., Pollack R., Roy M.-F., Algorithms in Real Algebraic Geometry, Algorithms and Computation in Math., 10, Springer-Verlag, Berlin, 2006, x+662 pp. | MR | Zbl

[5] Batkhin A. B., Bruno A. D., “Investigation of a real algebraic surface”, Programming and Computer Software, 41:2 (2015), 74–83 | DOI | MR

[6] Bruce J. W., Giblin P. J., Curves and Singularities. A Geometrical Introduction to Singularity Theory, Cambridge Univ. Press, Cambridge, 1984, xii+222 pp. | MR | Zbl

[7] Chen Zhiqi, Kang Yifang, Liang Ke, Invariant Einstein Metrics on Three-Locally-Symmetric Spaces, Preprint, 2014, arXiv: 1411.2694

[8] Chow B., Knopf D., The Ricci Flow: an Introduction, Math. Surveys and Monogr., 110, AMS, Providence, RI, 2004, xii+325 pp. | DOI | MR | Zbl

[9] Lomshakov A. M., Nikonorov Yu. G., Firsov E. V., “On invariant Einstein metrics on three-locally-symmetric spaces”, Dokl. Math., 66:2 (2002), 224–227 | Zbl

[10] Sib. Math. J., 41:1 (2000), 168–172 | DOI | MR | Zbl

[11] Nikonorov Yu. G., Classification of Generalized Wallach Spaces, Preprint, 2014, arXiv: 1411.3131

[12] Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., “Geometry of homogeneous Riemannian manifolds”, J. Math. Sci., 146:7 (2007), 6313–6390 | DOI | MR | Zbl

[13] Silhol R., Real Algebraic Surfaces, Lecture Notes Math., 1392, Springer-Verlag, Berlin, 1989, x+215 pp. | MR | Zbl

[14] Topping P., Lectures on the Ricci Flow, London Math. Soc. Lecture Note Ser., 325, Cambridge Univ. Press, Cambridge, 2006, x+113 pp. | MR | Zbl