On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 5-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We study topological structures of the sets $(0,1/2)^3\cap\Omega$ and $(0,1/2)^3\setminus\Omega$, where $\Omega$ is one special algebraic surface defined by a symmetric polynomial of degree $12$. These problems arise in studying of general properties of degenerate singular points of dynamical systems obtained from the normalized Ricci flow on generalized Wallach spaces. Our main goal is to prove the connectedness of $(0,1/2)^3\cap\Omega$ and to determine the number of connected components of $(0,1/2)^3\setminus\Omega$.
@article{VMJ_2015_17_3_a0,
author = {N. A. Abiev},
title = {On topological structure of some sets related to the normalized {Ricci} flow on generalized {Wallach} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--13},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/}
}
TY - JOUR AU - N. A. Abiev TI - On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 5 EP - 13 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/ LA - en ID - VMJ_2015_17_3_a0 ER -
N. A. Abiev. On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 3, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2015_17_3_a0/