About the number of primitive non-associated second order matrices of determinant $n$ divisible by a given matrix
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 62-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtained formulae for the number of primitive non-associated second order matrices of given odd determinant, as well as for the number of such matrices divisible on the right (left) by the given matrix used in questions of representability of integers by indefinite ternary quadratic forms.
@article{VMJ_2015_17_2_a8,
     author = {U. M. Pachev},
     title = {About the number of primitive non-associated second order matrices of determinant~$n$ divisible by a~given matrix},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {62--67},
     year = {2015},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a8/}
}
TY  - JOUR
AU  - U. M. Pachev
TI  - About the number of primitive non-associated second order matrices of determinant $n$ divisible by a given matrix
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 62
EP  - 67
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a8/
LA  - ru
ID  - VMJ_2015_17_2_a8
ER  - 
%0 Journal Article
%A U. M. Pachev
%T About the number of primitive non-associated second order matrices of determinant $n$ divisible by a given matrix
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 62-67
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a8/
%G ru
%F VMJ_2015_17_2_a8
U. M. Pachev. About the number of primitive non-associated second order matrices of determinant $n$ divisible by a given matrix. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 62-67. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a8/

[1] Linnik Yu. V., Ergodicheskie svoistva algebraicheskikh polei, Izd-vo LGU, 1967

[2] Malyshev A. V., Pachev U. M., “Ob arifmetike matrits vtorogo poryadka”, Zapiski nauchnykh seminarov LOMI, 93, 1980, 41–86 | MR | Zbl

[3] Pachev U. M., “Predstavlenie tselykh chisel izotropnymi ternarnymi kvadratnymi formami”, Izv. RAN. Ser. mat., 70:3 (2006), 167–184 | DOI | MR | Zbl

[4] Newman M., Integral matrices, AP, N.Y.–L., 1972, 224 pp. | MR | Zbl

[5] Pachev U. M., “O chisle privedennykh tselochislennykh binarnykh kvadratichnykh form s usloviem delimosti pervykh koeffitsientov”, Chebyshevskii sb., 4:3(7) (2003), 92–105 | MR | Zbl