About the number of primitive non-associated second order matrices of determinant $n$ divisible by a given matrix
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 62-67
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtained formulae for the number of primitive non-associated second order matrices of given odd determinant, as well as for the number of such matrices divisible on the right (left) by the given matrix used in questions of representability of integers by indefinite ternary quadratic forms.
@article{VMJ_2015_17_2_a8,
author = {U. M. Pachev},
title = {About the number of primitive non-associated second order matrices of determinant~$n$ divisible by a~given matrix},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {62--67},
year = {2015},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a8/}
}
TY - JOUR AU - U. M. Pachev TI - About the number of primitive non-associated second order matrices of determinant $n$ divisible by a given matrix JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 62 EP - 67 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a8/ LA - ru ID - VMJ_2015_17_2_a8 ER -
U. M. Pachev. About the number of primitive non-associated second order matrices of determinant $n$ divisible by a given matrix. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 62-67. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a8/
[1] Linnik Yu. V., Ergodicheskie svoistva algebraicheskikh polei, Izd-vo LGU, 1967
[2] Malyshev A. V., Pachev U. M., “Ob arifmetike matrits vtorogo poryadka”, Zapiski nauchnykh seminarov LOMI, 93, 1980, 41–86 | MR | Zbl
[3] Pachev U. M., “Predstavlenie tselykh chisel izotropnymi ternarnymi kvadratnymi formami”, Izv. RAN. Ser. mat., 70:3 (2006), 167–184 | DOI | MR | Zbl
[4] Newman M., Integral matrices, AP, N.Y.–L., 1972, 224 pp. | MR | Zbl
[5] Pachev U. M., “O chisle privedennykh tselochislennykh binarnykh kvadratichnykh form s usloviem delimosti pervykh koeffitsientov”, Chebyshevskii sb., 4:3(7) (2003), 92–105 | MR | Zbl