Artin's theorem for $f$-rings
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 32-36

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result states that each positive polynomial $p$ in $N$ variables with coefficients in a unital Archimedean $f$-ring $K$ is representable as a sum of squares of rational functions over the complete ring of quotients of $K$ provided that $p$ is positive on the real closure of $K$. This is proved by means of Boolean valued interpretation of Artin's famous theorem which answers Hilbert's 17th problem affirmatively.
@article{VMJ_2015_17_2_a4,
     author = {A. G. Kusraev},
     title = {Artin's theorem for $f$-rings},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {32--36},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Artin's theorem for $f$-rings
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 32
EP  - 36
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/
LA  - en
ID  - VMJ_2015_17_2_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Artin's theorem for $f$-rings
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 32-36
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/
%G en
%F VMJ_2015_17_2_a4
A. G. Kusraev. Artin's theorem for $f$-rings. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 32-36. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/