Artin's theorem for $f$-rings
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 32-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result states that each positive polynomial $p$ in $N$ variables with coefficients in a unital Archimedean $f$-ring $K$ is representable as a sum of squares of rational functions over the complete ring of quotients of $K$ provided that $p$ is positive on the real closure of $K$. This is proved by means of Boolean valued interpretation of Artin's famous theorem which answers Hilbert's 17th problem affirmatively.
@article{VMJ_2015_17_2_a4,
     author = {A. G. Kusraev},
     title = {Artin's theorem for $f$-rings},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {32--36},
     year = {2015},
     volume = {17},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Artin's theorem for $f$-rings
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 32
EP  - 36
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/
LA  - en
ID  - VMJ_2015_17_2_a4
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Artin's theorem for $f$-rings
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 32-36
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/
%G en
%F VMJ_2015_17_2_a4
A. G. Kusraev. Artin's theorem for $f$-rings. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 32-36. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a4/

[1] Anderson F. W., “Lattice-ordered rings of quotients”, Canad. J. Math., 17 (1965), 434–448 | DOI | MR | Zbl

[2] Bigard A., Keimel K., Wolfenstein S., Groupes et Anneaux Réticulés, Lecture Notes in Math., 608, Springer-Verlag, Berlin etc., 1977, xi+334 pp. | MR | Zbl

[3] Bochnak J., Coste M., Roy M.-F., Real Algebraic Geometry, Springer, Berlin a. o., 1998, x+430 pp. | MR | Zbl

[4] Delzell C. N., González-Vega L., Lombardi H., “A continuous and rational solution to Hilbert's 17th problem and several cases of the Positivstellensatz”, Computational Alg. Geom., Progress in Math., 109, eds. F. Eyssette, A. Galligo, Birkhäuser, Boston a. o., 1993, 61–75 | DOI | MR | Zbl

[5] Gordon E. I., “Real numbers in Boolean-valued models of set theory and $K$-spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 773–775 | MR | Zbl

[6] Gordon E. I., Rationally Complete Semiprime Commutative Rings in Boolean Valued Models of Set Theory, No 3286-83, VINITI, Gor'kiĭ, 1983, 35 pp.

[7] Henriksen M., Isbell J. R., “Lattice-ordered rings and function rings”, Pacific J. Math., 12 (1962), 533–565 | DOI | MR | Zbl

[8] Knebusch M., Zhang D., “Convexity, Valuations and Prüfer extensions in real algebra”, Documenta Math., 10 (2005), 1–109 | MR | Zbl

[9] Kusraev A. G., Kutateladze S. S., Introduction to Boolean Valued Analysis, Nauka, M., 2005, 526 pp. (in Russian) | MR | Zbl

[10] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis: Selected Topics, SMI VSC RAS, Vladikavkaz, 2014, iv+400 pp.

[11] Lambek J., Lectures on rings and modules, Blaisdell Publ. Comp., Toronto; AMS Chelesea publishing, Providence, R.I., 1966, 183 pp. | MR | Zbl

[12] Lombardi H., Perrucci D., Roy M.-F., An elementary recursive bound for effective Positivstellensatz and Hilbert 17th problem, 2014, arXiv: 1404.2338v2[math.AG]

[13] Prasolov V. V., Polynomials, Springer-Verlag, Berlin–Heidelberg, 2010, 301 pp. | MR | Zbl

[14] Prestel A., Delzell Ch. N., Positive Polynomials: From Hilbert's 17th Problem to Real Algebra, Springer, Berlin a. o., 2001, viii+267 pp. | MR | Zbl

[15] Schwartz N., The basic theory of real closed spaces, Mem. Amer. Math. Soc., 77, no. 397, Amer. Math. Soc., Providence, R.I., 1989, 122 pp. | MR

[16] Takeuti G., Two Applications of Logic to Mathematics, Princeton Univ. Press, Princeton, 1978 | MR | Zbl

[17] Takeuti G., “A transfer principle in harmonic analysis”, Symbolic Logic, 44:3 (1979), 417–440 | DOI | MR | Zbl