On finite groups with small simple spectrum, II
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 22-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of the results about finite groups whose prime graphs have a small number of vertices obtained recently by the author jointly with his pupils. It is refined a description of the chief factors of $4$-primary groups, whose prime graphs are disconnected. The finite almost simple $5$-primary and $6$-primary groups and their Gruenberg–Kegel graphs are determined. The chief factors of the commutator subgroups of finite non-solvable groups $G$ with disconnected Gruenberg–Kegel graph having exactly $5$ vertices are described in the case when $G/F(G)$ is an almost simple $n$-primary group for $n\le4$. The problem of the realizability of a graph with at most five vertices as the prime graph of a finite group is solved. The finite almost simple groups with prime graphs, whose the connected components are complete graphs, are determined. The finite almost simple groups whose prime graphs do not contain triangles are determined. It is proved that the groups $^2E_6(2)$, $E_7(2)$ and $E_7(3)$ are recognizable by the prime graph. Absolutely irreducible $SL_n(p^f)$-modules over a field of prime characteristic $p$, where an element of a given prime order $m$ from a Zinger cycle of $SL_n(p^f)$ acts freely, are classified in the following three cases: a) the residue of $q$ modulo $m$ generates the multiplicative group of the field of order $m$ (in particular, this holds for $m=3$); b) $m=5$; c) $n=2$.
@article{VMJ_2015_17_2_a3,
     author = {A. S. Kondratiev},
     title = {On finite groups with small simple {spectrum,~II}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {22--31},
     year = {2015},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a3/}
}
TY  - JOUR
AU  - A. S. Kondratiev
TI  - On finite groups with small simple spectrum, II
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 22
EP  - 31
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a3/
LA  - ru
ID  - VMJ_2015_17_2_a3
ER  - 
%0 Journal Article
%A A. S. Kondratiev
%T On finite groups with small simple spectrum, II
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 22-31
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a3/
%G ru
%F VMJ_2015_17_2_a3
A. S. Kondratiev. On finite groups with small simple spectrum, II. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 22-31. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a3/

[1] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[2] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[3] Iiyori N., Yamaki H., “Prime graph components of the simple groups of Lie type over the fields of even characteristic”, J. Algebra, 155:2 (1993), 335–343 ; “Corrigenda”, J. Algebra, 181:2 (1996), 659 | DOI | MR | Zbl | DOI | MR | Zbl

[4] Lucido M. S., “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 1–22 ; “Addendum”, Rend. Sem. Mat. Univ. Padova, 107 (2002), 189–190 | MR | Zbl | MR | Zbl

[5] Vasilev A. V., Vdovin E. P., “Kriterii smezhnosti v grafe prostykh chisel”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[6] Vasilev A. V., Vdovin E. P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[7] Kondratev A. S., “O konechnykh gruppakh s nebolshim prostym spektrom”, Gruppy i grafy, Itogi nauki. Yug Rossii. Mat. forum, 6, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 52–70

[8] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 793 pp. | MR | Zbl

[9] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[10] Conway J. H. et. al., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[11] Kondratev A. S., Khramtsov I. V., “O konechnykh triprimarnykh gruppakh”, Tr. In-ta mat-ki i mekhaniki UrO RAN, 16, no. 3, 2010, 150–158

[12] Kondratev A. S., Khramtsov I. V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta mat-ki i mekhaniki UrO RAN, 17, no. 4, 2011, 142–159

[13] Kondratev A. S., Khramtsov I. V., “O neprostykh konechnykh triprimarnykh gruppakh s nesvyaznym grafom prostykh chisel”, Sib. elektron. mat. izv., 9 (2012), 472–477 | MR

[14] Kondratev A. S., Khramtsov I. V., “Vpolne privodimost nekotorykh $GF(2)A_7$-modulei”, Tr. In-ta mat-ki i mekhaniki UrO RAN, 18, no. 3, 2012, 139–143

[15] Khramtsov I. V., “O konechnykh neprostykh 4-primarnykh gruppakh”, Sib. elektron. mat. izv., 11 (2014), 695–708

[16] Kondratev A. S., Khramtsov I. V., “O konechnykh gruppakh, kotorye imeyut nesvyaznyi graf prostykh chisel i kompozitsionnyi faktor, izomorfnyi $L_3(17)$”, Algebra i mat. logika: teoriya i prilozheniya, Izd-vo Kazan. un-ta, Kazan, 2014, 81–82

[17] Kondratev A. S., Suprunenko I. D., Khramtsov I. V., “O modulyarnykh predstavleniyakh gruppy $L_3(17)$”, Tez. dokl. mezhdunar. konf. “Maltsevskie chteniya”, IM SO RAN i NGU, Novosibirsk, 2014, 63

[18] Khramtsov I. V., “O konechnykh gruppakh, kotorye imeyut nesvyaznyi graf prostykh chisel i kompozitsionnyi faktor, izomorfnyi gruppe $L_2(81)$”, Tr. mezhdunar. shkoly-konf. po teorii grupp, posvyasch. 70-letiyu V. V. Kabanova, Izd-vo KBGU, Nalchik, 2014, 56–58

[19] Kondrat'ev A. S., “Finite almost simple 5-primary groups and their Gruenberg–Kegel graphs”, Izv. Gomelskogo gos. un-ta, 2014, no. 3(84), 58–60

[20] Kondrat'ev A. S., “Finite almost simple 5-primary groups and their Gruenberg–Kegel graphs”, Sib. el. matem. izv., 11 (2014), 634–674

[21] Jafarzadeh A., Iranmanesh A., “On simple $K_n$-groups for $n=5,6$”, London Math. Soc. Lecture Note Ser., 340 (2007), 517–526 | MR | Zbl

[22] Zhang L., Shi W., Lv H., Yu D., Chen S., $OD$-characterization of finite simple $K_5$-groups, Preprint, 2011 | MR

[23] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver. 4.4.12, URL: , 2008 http://www.gap-system.org

[24] Kolpakova V. A., Kondratev A. S., “O konechnykh nerazreshimykh 5-primarnykh gruppakh $G$ s nesvyaznym grafom Gryunberga–Kegelya takikh, chto $|\pi(G/F(G))|\leq4$”, Tez. dokl. mezhdunar. konf. “Maltsevskie chteniya”, IM i NGU, Novosibirsk, 2014, 62

[25] Kolpakova V. A., Kondratev A. S., “Konechnye pochti prostye 6-primarnye gruppy i ikh grafy Gryunberga–Kegelya”, Algebra i prilozheniya, Tr. mezhdunar. konf. po algebre, posvyasch. 100-letiyu so dnya rozhdeniya L. A. Kaluzhnina, KBGU, Nalchik, 2014, 63–66

[26] Herzog M., “On finite simple groups of order divisible by three primes only”, J. Algebra, 10:3 (1968), 383–388 | DOI | MR | Zbl

[27] Mazurov V. D., Khukhro V. I. (Red.), Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., Novosib. gos. un-t, Novosibirsk, 2010

[28] Kondratev A. S., “Raspoznavaemost grupp $E_7(2)$ i $E_7(3)$ po grafu prostykh chisel”, Trudy In-ta matematiki i mekhaniki UrO RAN, 20, no. 2, 2014, 223–229

[29] Mazurov V. D., “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta, 2005, no. 36, Matematika i mekhanika. Vyp. 7, 119–138 | MR | Zbl

[30] Kondratev A. S., “Raspoznavaemost po grafu prostykh chisel gruppy ${^2}E_6(2)$”, Materialy Mezhdunar. simpoziuma “Abelevy gruppy”, posvyasch. 100-letiyu so dnya rozhdeniya L. Ya. Kulikova, MPGU, M., 2014, 35–37

[31] Tong-Viet H. P., “Groups whose prime graphs have no triangles”, J. Algebra, 378 (2013), 196–206 | DOI | MR | Zbl

[32] Gavrilyuk A. L., Khramtsov I. V., Kondrat'ev A. S., Maslova N. V., “On realizability of a graph as the prime graph of a finite group”, Sib. el. matem. izv., 11 (2014), 246–257

[33] Lucido M. C., “Groups in which the prime graph is a tree”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5:1 (2002), 131–148 | MR | Zbl

[34] Alekseeva O. A., Kondratev A. S., “Konechnye pochti prostye gruppy, grafy Gryunberga–Kegelya kotorykh ne soderzhat treugolnikov”, Tez. dokl. mezhdunar. konf. “Maltsevskie chteniya”, IM i NGU, Novosibirsk, 2014, 50

[35] Lucido M. S., Moghaddamfar A. R., “Groups with complete prime graph connected components”, J. Group Theory, 7:3 (2004), 373–384 | DOI | MR | Zbl

[36] Zinoveva M. R., Mazurov V. D., “O konechnykh gruppakh s nesvyaznym grafom prostykh chisel”, Tr. In-ta mat-ki i mekhaniki UrO RAN, 18, no. 3, 2012, 99–105

[37] Zinoveva M. R., Kondratev A. S., “Klassifikatsiya konechnykh pochti prostykh grupp s grafami prostykh chisel, vse svyaznye komponenty kotorykh yavlyayutsya klikami”, Teoriya grupp i ee prilozheniya, Tr. mezhdnar. shkoly-konf. po teorii grupp, posvyasch. 70-letiyu V. V. Kabanova, Izd-vo KBGU, Nalchik, 2014, 25–26

[38] Suprunenko I. D., Zalesski A. E., “Fixed vectors for elements in modules for algebraic groups”, Intern. J. Algebra Comput., 17:5–6 (2007), 1249–1261 | DOI | MR | Zbl

[39] Kondratev A. S., Osinovskaya A. A., Suprunenko I. D., “O povedenii elementov prostogo poryadka iz tsikla Zingera v predstavleniyakh spetsialnoi lineinoi gruppy”, Tr. In-ta mat-ki i mekhaniki UrO RAN, 19, no. 3, 2013, 179–186

[40] Higman G., Odd Characterizations of Finite Simple Groups, Lecture Notes, Univ. Michigan, Michigan, 1968, 77 pp.

[41] Stewart W. B., “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc., 426:4 (1973), 653–680 | DOI | MR

[42] Wilson R., “Certain representations of Chevalley groups over $CF(2^n)$”, Comm. Algebra, 3:4 (1975), 319–364 | DOI | MR | Zbl

[43] Fleischmann P., Lempken W., Zalesskii A. E., “Linear groups over $GF(2^k)$ generated by a conjugacy class of a fixed point free element of order 3”, J. Algebra, 244:2 (2001), 631–663 | DOI | MR | Zbl

[44] Suprunenko I. D., Zalesski A. E., “Fixed vectors for elements in modules for algebraic groups”, Intern. J. Algebra Comput., 17:5–6 (2007), 1249–1261 | DOI | MR | Zbl

[45] Zalesski A. E., “On eigenvalues of group elements in representations of algebraic groups and finite Chevalley groups”, Acta Appl. Math., 108:1 (2009), 175–195 | DOI | MR | Zbl