On locally finite $\pi$-separable groups
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 16-21
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the $\pi$-length of a locally finite $\pi$-separable group $G$ is bounded by a natural $m$ if the $\pi$-length of every finite subgroup of $G$ is bounded by $m$.
			
            
            
            
          
        
      @article{VMJ_2015_17_2_a2,
     author = {A. Kh. Zhurtov and Z. B. Seljaeva},
     title = {On locally finite $\pi$-separable groups},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {16--21},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a2/}
}
                      
                      
                    A. Kh. Zhurtov; Z. B. Seljaeva. On locally finite $\pi$-separable groups. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 16-21. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a2/
