Automorphisms of a~strongly regular graph with parameters $(1197,156,15,21)$
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 5-11
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a $3$-$(V,K,\Lambda)$ scheme $\mathscr E=(X,\mathscr B)$ is an extension of a symmetric $2$-scheme. Then either $\mathscr E$ is Hadamard $3$-$(4\Lambda+4,2\Lambda+2,\Lambda)$ scheme, or $V=(\Lambda+1)(\Lambda^2+5\Lambda+5)$ and $K=(\Lambda+1)(\Lambda+2)$, or $V=496$, $K=40$ and $\Lambda=3$. The complementary graph of a block graph of $3$-$(496,40,3)$ scheme is strongly regular with parameters $(6138,1197,156,252)$ and the neighborhoods of its vertices are strongly regular with parameters $(1197,156,15,21)$. In this paper automorphisms of strongly regular graph with parameters $(1197,156,15,21)$ are studied. We yet introduce the structure of automorphism groups of abovementioned graph in vetrex symmetric case.
@article{VMJ_2015_17_2_a0,
author = {V. V. Bitkina and A. K. Gutnova and A. A. Makhnev},
title = {Automorphisms of a~strongly regular graph with parameters $(1197,156,15,21)$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--11},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a0/}
}
TY - JOUR AU - V. V. Bitkina AU - A. K. Gutnova AU - A. A. Makhnev TI - Automorphisms of a~strongly regular graph with parameters $(1197,156,15,21)$ JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 5 EP - 11 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a0/ LA - ru ID - VMJ_2015_17_2_a0 ER -
%0 Journal Article %A V. V. Bitkina %A A. K. Gutnova %A A. A. Makhnev %T Automorphisms of a~strongly regular graph with parameters $(1197,156,15,21)$ %J Vladikavkazskij matematičeskij žurnal %D 2015 %P 5-11 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a0/ %G ru %F VMJ_2015_17_2_a0
V. V. Bitkina; A. K. Gutnova; A. A. Makhnev. Automorphisms of a~strongly regular graph with parameters $(1197,156,15,21)$. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 5-11. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a0/