On finite Lipschitz Orlicz–Sobolev classes
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is found a sufficient condition of finite Lipschitz of homeomorphisms of the Orlicz–Sobolev class $W_\mathrm{loc}^{1,\varphi}$ under a condition of the Calderon type.
@article{VMJ_2015_17_1_a7,
     author = {R. R. Salimov},
     title = {On finite {Lipschitz} {Orlicz{\textendash}Sobolev} classes},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {64--77},
     year = {2015},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a7/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - On finite Lipschitz Orlicz–Sobolev classes
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 64
EP  - 77
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a7/
LA  - ru
ID  - VMJ_2015_17_1_a7
ER  - 
%0 Journal Article
%A R. R. Salimov
%T On finite Lipschitz Orlicz–Sobolev classes
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 64-77
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a7/
%G ru
%F VMJ_2015_17_1_a7
R. R. Salimov. On finite Lipschitz Orlicz–Sobolev classes. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a7/

[1] Gehring F. W., “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances in the theory of Riemann surfaces, Proc. Conf. Stonybrook (N.Y., 1969), Ann. of Math. Studies, 66, 1971, 175–193 | MR

[2] Iwaniec T., Sverák V., “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118 (1993), 181–188 | DOI | MR | Zbl

[3] Iwaniec T., Martin G., Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford, 2001 | MR

[4] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Gos. izd-vo fiz.-mat. lit-ry, Moskva, 1958 | MR

[5] Mazya V. G., Prostranstva S. L. Soboleva, LGU, Leningrad, 1985, 416 pp. | MR

[6] Afanaseva E. S., Ryazanov V. I., Salimov R. R., “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. matem. visnik, 8:3 (2011), 319–342 | MR

[7] Alberico A., Cianchi A., “Differentiability properties of Orlicz–Sobolev functions”, Ark. Mat., 43 (2005), 1–28 | DOI | MR | Zbl

[8] Calderon A. P., “On the differentiability of absolutely continuous functions”, Riv. Math. Univ. Parma, 2 (1951), 203–213 | MR | Zbl

[9] Cianchi A., “A sharp embedding theorem for Orlicz–Sobolev spaces”, Indiana Univ. Math. J., 45:1 (1996), 39–65 | DOI | MR | Zbl

[10] Donaldson T., “Nonlinear elliptic boundary-value problems in Orlicz–Sobolev spaces”, J. Diff. Eq., 10 (1971), 507–528 | DOI | MR | Zbl

[11] Gossez J. P., Mustonen V., “Variational inequalities in Orlicz–Sobolev spaces”, Nonlinear Anal. Theory Meth. Appl., 11 (1987), 379–392 | DOI | MR | Zbl

[12] Hsini M., “Existence of solutions to a semilinear elliptic system through generalized Orlicz–Sobolev spaces”, J. Partial Differ. Equ., 23:2 (2010), 168–193 | MR | Zbl

[13] Iwaniec T., Koskela P., Onninen J., “Mappings of finite distortion: Compactness”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 27:2 (2002), 391–417 | MR | Zbl

[14] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 | MR

[15] Koronel J. D., “Continuity and $k$-th order differentiability in Orlicz–Sobolev spaces: $W^kL_A$”, Israel J. Math., 24:2 (1976), 119–138 | DOI | MR | Zbl

[16] Kauhanen J., Koskela P., Maly J., “On functions with derivatives in a Lorentz space”, Manuscripta Math., 10 (1999), 87–101 | DOI | MR

[17] Khruslov E. Ya., Pankratov L. S., “Homogenization of the Dirichlet variational problems in Sobolev-Orlicz spaces”, Operator theory and its applications (Winuipeg, MB, 1998), Fields Inst. Commun., 25, Amer. Math. Soc., Providence, RI, 2000, 345–366 | MR | Zbl

[18] Landes R., Mustonen V., “Pseudo-monotone mappings in Sobolev–Orlicz spaces and nonlinear boundary value problems on unbounded domains”, J. Math. Anal. Appl., 88 (1982), 25–36 | DOI | MR | Zbl

[19] Lappalainen V., Lehtonen A., “Embedding of Orlicz–Sobolev spaces in Hölder spaces”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 14:1 (1989), 41–46 | DOI | MR | Zbl

[20] Onninen J., “Differentiability of monotone Sobolev functions”, Real. Anal. Exchange, 26:2 (2000/2001), 761–772 | MR

[21] Tuominen H., “Characterization of Orlicz–Sobolev space”, Ark. Mat., 45:1 (2007), 123–139 | DOI | MR | Zbl

[22] Vuillermot P. A., “Hölder-regularity for the solutions of strongly nonlinear eigenvalue problems on Orlicz–Sobolev space”, Houston J. Math., 13 (1987), 281–287 | MR | Zbl

[23] Väisälä J., “Two new characterizations for quasiconformality”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 362 (1965), 1–12 | MR

[24] Menchoff D., “Sur les differencelles totales des fonctions univalentes”, Math. Ann., 105 (1931), 75–85 | DOI | MR | Zbl

[25] Gehring F. W., Lehto O., “On the total differentiability of functions of a complex variable”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 272 (1959), 3–8 | MR

[26] Lehto O., Virtanen K., Quasiconformal Mappings in the Plane, Springer-Verlag, N.Y., 1973 | MR | Zbl

[27] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, N.Y. etc., 2009, 367 pp. | MR | Zbl

[28] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 448 (1969), 1–40 | MR

[29] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, Novosibirsk, 1983 | MR

[30] Gehring F. W., “Quasiconformal mappings”, Complex Analysis and its Applications, v. 2, International Atomic Energy Agency, Vienna, 1976, 213–268 | MR | Zbl

[31] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Arc. Mat., 13 (1975), 131–144 | DOI | MR | Zbl

[32] Shlyk V. A., “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zhurn., 34:6 (1993), 216–221 | MR | Zbl

[33] Maz'ya V., “Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces”, Contemp. Math., 338 (2003), 307–340 | DOI | MR | Zbl

[34] Kruglikov V. I., “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Mat. sb., 130(172):2 (1986), 185–206 | MR | Zbl

[35] Gehring F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl

[36] Golberg A., “Homeomorphisms with integrally restricted moduli”, Complex Analysis and Dynamical Systems IV. Part 1: Function Theory and Optimization, Contemp. Math., 553, Amer. Math. Soc., Providence, RI, 2011, 83–98 | DOI | MR | Zbl

[37] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Izv. vuzov. Matem., 2002, no. 10, 11–33 | MR | Zbl

[38] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Lebega i differentsiruemost kvaziadditivnykh funktsii mnozhestva”, Vladikavk. mat. zhurn., 4:1 (2002), 11–33 | MR | Zbl

[39] Vodop'yanov S. K., “Description of composition operators of Sobolev spaces”, Doklady Math., 71:1 (2005), 5–9 | MR

[40] Vodop'yanov S. K., “Composition operators on Sobolev spaces”, Complex Analysis and Dynamical Systems, v. II, Contemp. Math., 382, 2005, 401–415 | DOI | MR | Zbl

[41] Lomako T., Salimov R., Sevost'yanov E., “On equicontinuity of solutions to the Beltrami equations”, Ann. Univ. Bucharest. Math. Ser., 59:2 (2010), 263–274 | MR | Zbl

[42] Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., Salimov R. R., “Granichnoe povedenie i zadacha Dirikhle dlya uravnenii Beltrami”, Algebra i analiz, 25:4 (2013), 101–124 | MR

[43] Ryazanov V., Salimov R., Srebro U., Yakubov E., “On Boundary Value Problems for the Beltrami Equations”, Contemp. Math., 591 (2013), 211–242 | DOI | MR

[44] Ryazanov V. I., Sevostyanov E. A., “Ravnostepenno nepreryvnye klassy koltsevykh $Q$-gomeomorfizmov”, Sib. mat. zhurn., 48:6 (2007), 1361–1376 | MR | Zbl

[45] Salimov R. R., “Absolyutnaya nepreryvnost na liniyakh i differentsiruemost odnogo obobscheniya kvazikonformnykh otobrazhenii”, Izv. RAN. Ser. mat., 72:5 (2008), 141–148 | DOI | MR | Zbl

[46] Salimov R. R., “Ob otsenke mery obraza shara”, Sib. mat. zhurn., 53:4 (2012), 920–930 | MR | Zbl

[47] Salimov R. R., “On finitely Lipschitz space mappings”, Sib. elektron. mat. izv., 8 (2011), 284–295 | MR

[48] Salimov R. R., “O lipshitsevosti odnogo klassa otobrazhenii”, Mat. zametki, 94:4 (2013), 591–599 | DOI | Zbl

[49] Salimov R. R., “O koltsevykh $Q$-otobrazheniyakh otnositelno nekonformnogo modulya”, Dalnevost. mat. zhurn., 14:2 (2014), 257–269

[50] Salimov R. R., Sevostyanov E. A., “Teoriya koltsevykh $Q$-otobrazhenii v geometricheskoi teorii funktsii”, Mat. sb., 201:6 (2010), 131–158 | DOI | MR | Zbl

[51] Sevostyanov E. A., “K teorii ustraneniya osobennostei otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Izv. RAN. Ser. matem., 74:1 (2010), 159–174 | DOI | MR | Zbl

[52] Sevostyanov E. A., “O prostranstvennykh otobrazheniyakh s integralnymi ogranicheniyami na kharakteristiku”, Algebra i analiz, 24:1 (2012), 131–156 | MR | Zbl

[53] Sevostyanov E. A., “O tochkakh vetvleniya otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Sib. mat. zhurn., 51:5 (2010), 1129–1146 | MR | Zbl

[54] Kovtonyuk D. A., Ryazanov V. I., “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. mat. visnik, 5:2 (2008), 157–181 | MR

[55] Ziemer W. P., “Extremal length and $p$-capacity”, The Michigan Math. J., 16:1 (1969), 43–51 | DOI | MR | Zbl

[56] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. | MR

[57] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR

[58] Salimov R. R., “Nizhnie otsenki $p$-modulya i otobrazheniya klassa Soboleva”, Algebra i analiz, 26:6 (2014), 143–171