A characterization of order bounded disjointness preserving bilinear operators
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 60-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is aimed to characterize order bounded disjointness preserving bilinear operators in terms of their null-spaces. To this end the Boolean valued analysis approach is employed.
@article{VMJ_2015_17_1_a6,
     author = {A. G. Kusraev and S. S. Kutateladze},
     title = {A characterization of order bounded disjointness preserving bilinear operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {60--63},
     year = {2015},
     volume = {17},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a6/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - S. S. Kutateladze
TI  - A characterization of order bounded disjointness preserving bilinear operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 60
EP  - 63
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a6/
LA  - en
ID  - VMJ_2015_17_1_a6
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A S. S. Kutateladze
%T A characterization of order bounded disjointness preserving bilinear operators
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 60-63
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a6/
%G en
%F VMJ_2015_17_1_a6
A. G. Kusraev; S. S. Kutateladze. A characterization of order bounded disjointness preserving bilinear operators. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 60-63. http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a6/

[1] Kutateladze S. S., “On differences of lattice homomorphisms”, Sib. Math. J., 46:2 (2005), 390–393 | DOI | MR | Zbl

[2] Kutateladze S. S., “On Grothendieck subspaces”, Sib. Math. J., 46:3 (2005), 620–624 | DOI | MR | Zbl

[3] Kutateladze S. S., “The Farkas lemma revisited”, Sib. Math. J., 51:1 (2010), 78–87 | DOI | MR | Zbl

[4] Kusraev A. G., Kutateladze S. S., “On order bounded disjointness preserving operators”, Sib. Math. J., 55:5 (2014), 915–928 | DOI | MR | Zbl

[5] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000 | MR | Zbl

[6] Aliprantis C. D., Burkinshaw O., Positive Operators, Academic Press, N.Y., 1985, xvi+367 pp. | MR | Zbl

[7] Bell J. L., Boolean Valued Models and Independence Proofs in Set Theory, Clarendon Press, N.Y., 1985, xx+165 pp. | MR | Zbl

[8] Kluwer, Dordrecht, 1999 | MR | MR | Zbl

[9] Kusraev A. G., Tabuev S. N., “On multiplicative representation of disjointness preserving bilinear operators”, Sib. Math. J., 49:2 (2008), 357–366 | DOI | MR | Zbl

[10] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis: Selected Topics, Trends in Science: The South of Russia. A Mathematical Monograph, 6, SMI VSC RAS, Vladikavkaz, 2014, iv+400 pp.