Oscillatory properties of the Green function of discontinuous boundary value problem for equations of the fourth order
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 47-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the sign and oscillatory properties of the Green function of discontinuous boundary value problem for a fourth-order equation describing small deformations of two rigidly connected rods with elastic support at the connection point. We obtain criterion for the oscillatory property of the Green function.
@article{VMJ_2015_17_1_a5,
     author = {R. Ch. Kulaev},
     title = {Oscillatory properties of the {Green} function of discontinuous boundary value problem for equations of the fourth order},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {47--59},
     year = {2015},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a5/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
TI  - Oscillatory properties of the Green function of discontinuous boundary value problem for equations of the fourth order
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 47
EP  - 59
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a5/
LA  - ru
ID  - VMJ_2015_17_1_a5
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%T Oscillatory properties of the Green function of discontinuous boundary value problem for equations of the fourth order
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 47-59
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a5/
%G ru
%F VMJ_2015_17_1_a5
R. Ch. Kulaev. Oscillatory properties of the Green function of discontinuous boundary value problem for equations of the fourth order. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a5/

[1] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2007, 272 pp. | MR

[2] Pokornyi Yu. V., Bakhtina Zh. I., Zvereva M. B., Shabrov S. A., Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, Fizmatlit, M., 2009, 192 pp.

[3] Pokornyi Yu. V., “O znakoregulyarnykh funktsiyakh Grina nekotorykh neklassicheskikh zadach”, Uspekhi mat. nauk, 36:4 (1981), 205–206

[4] Borovskikh A. V., Pokornyi Yu. V., “Sistemy Chebysheva–Khaara v teorii razryvnykh yader Kelloga”, Uspekhi mat. nauk, 49:3 (1994), 3–42 | MR | Zbl

[5] Borovskikh A. V., Lazarev K. P., Pokornyi Yu. V., “Ob ostsillyatsionnykh spektralnykh svoistvakh razryvnykh kraevykh zadach”, Dokl. AN, 335:4 (1994), 409–412 | MR | Zbl

[6] Borovskikh A. V., Lazarev K. P., Pokornyi Yu. V., “O yadrakh Kelloga v razryvnykh zadachakh”, Optimalnoe upravlenie i differentsialnye uravneniya, Tr. MIAN im. V. A. Steklova, 211, Nauka, M., 1995, 102–120 | MR | Zbl

[7] Pokornyi Yu. V., Lazarev K. P., “Nekotorye ostsillyatsionnye teoremy dlya mnogotochechnykh zadach”, Dif. uravneniya, 23:4 (1987), 658–670 | MR | Zbl

[8] Borovskikh A. V., “Usloviya znakoregulyarnosti razryvnykh kraevykh zadach”, Mat. zametki, 74:5 (2003), 643–655 | DOI | MR | Zbl

[9] Levin A. Yu., Stepanov G. D., “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka, II”, Sib. mat. zhurn., 17:4 (1976), 813–830 | MR | Zbl

[10] Teptin A. L., “K voprosu ob ostsillyatsionnosti spektra mnogotochechnoi kraevoi zadachi”, Izv. vuzov. Matematika, 1999, no. 4(443), 44–53 | MR | Zbl

[11] Pokornyi Yu. V., “O nulyakh funktsii Grina zadachi Valle Pussena”, Mat. sb., 199:6 (2008), 105–136 | DOI | MR | Zbl

[12] Derr V. Ya., “K obobschennoi zadache Valle Pussena”, Dif. uravneniya, 23:11 (1987), 1861–1872 | MR | Zbl

[13] Kulaev R. Ch., “Kriterii polozhitelnosti funktsii Grina mnogotochechnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Dif. uravneniya, 51:2 (2015), 161–173 | DOI

[14] Kulaev R. Ch., “Ob ostsillyatsionnosti funktsii Grina mnogotochechnoi kraevoi zadachi dlya uravneniya chetvertogo poryadka”, Dif. uravneniya, 2015 (to appear)

[15] Levin A. Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=0$”, Uspekhi mat. nauk, 24:2 (1969), 43–96 | MR | Zbl

[16] Derr V. Ya., “Neostsillyatsiya reshenii differentsialnykh uravnenii”, Vestn. Udmurdskogo universiteta, 2009, no. 1, 46–89

[17] Stepanov G. D., “Effektivnye kriterii znakoregulyarnosti i ostsillyatsionnosti funktsii Grina dvukhtochechnykh zadach”, Mat. sb., 188:11 (1997), 121–159 | DOI | MR | Zbl

[18] Zavgorodnii M. G., Maiorova S. P., “Ob odnom uravnenii matematicheskoi fiziki chetvertogo poryadka na grafe”, Issledovaniya po dif. uravneniyam i mat. modelirovaniyu, VNTs RAN, Vladikavkaz, 2008, 88–102

[19] Kulaev R. Ch., “Metod reduktsii dlya uravneniya chetvertogo poryadka na grafe”, Dif. uravneniya, 50:3 (2014), 296–308 | DOI | MR | Zbl