A study on a class of $p$-valent functions associated with generalized hypergeometric functions
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 31-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study and introduce the majorization properties of a new class of analytic $p$-valent functions of complex order defined by the generalized hypergeometric function. Some known consequences of our main result will be given. Moreover, we investigate the coefficient estimates for this class.
@article{VMJ_2015_17_1_a3,
     author = {E. El-Yagubi and M. Darus},
     title = {A study on a~class of $p$-valent functions associated with generalized hypergeometric functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--38},
     year = {2015},
     volume = {17},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a3/}
}
TY  - JOUR
AU  - E. El-Yagubi
AU  - M. Darus
TI  - A study on a class of $p$-valent functions associated with generalized hypergeometric functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 31
EP  - 38
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a3/
LA  - en
ID  - VMJ_2015_17_1_a3
ER  - 
%0 Journal Article
%A E. El-Yagubi
%A M. Darus
%T A study on a class of $p$-valent functions associated with generalized hypergeometric functions
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 31-38
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a3/
%G en
%F VMJ_2015_17_1_a3
E. El-Yagubi; M. Darus. A study on a class of $p$-valent functions associated with generalized hypergeometric functions. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a3/

[1] Selvaraj C., Karthikeyan K. R., “Differential subordination and superordination for certain subclasses of analytic functions”, Far East J. of Math. Sci., 29:2 (2008), 419–430 | MR | Zbl

[2] El-Ashwah R. M., “Majorization Properties for Subclass of Analytic $p$-Valent Functions Defined by the Generalized Hypergeometric Function”, Tamsui Oxf. J. Math. Sci., 28:4 (2012), 395–405 | MR | Zbl

[3] Dziok J., Srivastava H. M., “Classes of analytic functions associated with the generalized hypergeometric function”, Appl. Math. Comp., 103:1 (1999), 1–13 | DOI | MR | Zbl

[4] Selvaraj C., Karthikeyan K. R., “Univalence of a general integral operator associated with the generalized hypergeometric function”, Tamsui Oxf. J. Math. Sci., 26:1 (2010), 41–51 | MR | Zbl

[5] Hohlov J. E., “Operators and operations on the class of univalent functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 10(197), 83–89 | MR | Zbl

[6] Salagean G. S., “Subclasses of univalent functions”, Complex analysis-fifth Romanian-Finnish seminar, Part 1, Lecture Notes in Math., 1013, Springer, Berlin, 1981, 362–372 | DOI | MR

[7] Al-Oboudi F. M., “On univalent functions defined by a generalized Salagean operator”, Int. J. Math. Math. Sci., 25–28 (2004), 1429–1436 | DOI | MR | Zbl

[8] Ruscheweyh S., “New criteria for univalent functions”, Proc. Amer. Math. Soc., 49 (1975), 109–115 | DOI | MR | Zbl

[9] El-Yagubi E., Darus M., “A new subclass of analytic functions with respect to $k$-symmetric points”, Far East J. of Math. Sci., 82:1 (2013), 45–63 | Zbl

[10] Carlson B. C., Shaffer D. B., “Starlike and prestarlike hypergeometric functions”, SIAM J. Math. Anal., 15:4 (1984), 737–745 | DOI | MR | Zbl

[11] Cátás A., “On certain class of $p$-valent functions defined by a new multiplier transformations”, Proceedings Book of the International Symposium G. F. T. A., Istanbul Kultur University, Istanbul, 2007, 241–250

[12] Nasr M. A., Aouf M. K., “Starlike function of complex order”, J. Natur. Sci. Math., 25:1 (1985), 1–12 | MR | Zbl

[13] Altintas O., Özkan Ö., Srivastava H. M., “Majorization by starlike functions of complex order”, Complex Variables Theory Appl., 46:3 (2001), 207–218 | DOI | MR | Zbl

[14] MacGregor T. H., “Majorization by univalent functions”, Duke Math. J., 34 (1967), 95–102 | DOI | MR | Zbl

[15] Darus M., Ibrahim R. W., “Multivalent functions based on a linear operator”, Miskolc Math. Notes, 11:1 (2010), 43–52 | MR | Zbl

[16] Ibrahim R. W., “Existence and uniqueness of holomorphic solutions for fractional Cauchy problem”, J. Math. Anal. Appl., 380 (2011), 232–240 | DOI | MR | Zbl