On optimal recovery of Dirichlet problem from a boundary function known approximately
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of best (optimal) recovery of a solution of the Dirichlet problem for the upper half-plane from the Fourier transform of the boundary functions known approximately in considered. A series of optimal recovery methods are found and the corresponding errors recovery are calculated.
@article{VMJ_2015_17_1_a0,
     author = {E. V. Abramova},
     title = {On optimal recovery of {Dirichlet} problem from a~boundary function known approximately},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--13},
     year = {2015},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a0/}
}
TY  - JOUR
AU  - E. V. Abramova
TI  - On optimal recovery of Dirichlet problem from a boundary function known approximately
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 3
EP  - 13
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a0/
LA  - ru
ID  - VMJ_2015_17_1_a0
ER  - 
%0 Journal Article
%A E. V. Abramova
%T On optimal recovery of Dirichlet problem from a boundary function known approximately
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 3-13
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a0/
%G ru
%F VMJ_2015_17_1_a0
E. V. Abramova. On optimal recovery of Dirichlet problem from a boundary function known approximately. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a0/

[1] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. $\dots$ k. f.-m. n., MGU, M., 1965

[2] Marchuk A. G., Osipenko K. Yu., “Nailuchshee priblizhenie funktsii, zadannykh s pogreshnostyu v konechnom chisle tochek”, Mat. zametki, 17:3 (1975), 359–368 | MR | Zbl

[3] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, Plenum Press, N.Y., 1977, 1–54 | MR

[4] Melkman A. A., Micchelli C. A., “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16 (1979), 87–105 | DOI | MR | Zbl

[5] Micchelli C. A., Rivlin T. J., “Lectures on Optimal Recovery”, Lecture Notes in Mathematics, 1129, Springer, Berlin, 1985, 21–93 | DOI | MR

[6] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego prilozheniya, 37:3 (2003), 51–64 | DOI | MR | Zbl

[7] Magaril-Ilyaev G. G., Osipenko K. Yu., “O vosstanovlenii operatorov svertochnogo tipa po netochnoi informatsii”, Tr. MIAN, 269, 2010, 181–192 | MR | Zbl

[8] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom garmonicheskom sinteze po netochno zadannomu spektru”, Funkts. analiz i ego prilozheniya, 44:3 (2010), 76–79 | DOI | MR | Zbl

[9] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, M., 1974

[10] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, 3-e izd., Editorial URSS, M., 2011

[11] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 4-e izd., Nauka, M., 1976 | MR