The edge $C_k$ graph of a~graph
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 61-64
Voir la notice de l'article provenant de la source Math-Net.Ru
For any integer $k\geq4$, the edge $C_k$ graph $E_k(G)$ of a graph $G=(V,E)$ has all edges of $G$ as it vertices, two vertices in $E_k(G)$ are adjacent if their corresponding edges in $G$ are either incident or belongs to a copy of $C_k$. In this paper, we obtained the characterizations for the edge $C_k$ graph of a graph $G$ to be connected, complete, bipartite etc. It is also proved that the edge $C_4$ graph has no forbidden subgraph characterization. Mereover, the dynamical behavior such as convergence, periodicity, mortality and touching number of $E_k(G)$ are studied.
@article{VMJ_2014_16_4_a7,
author = {P. Siva Kota Reddy and K. M. Nagaraja and V. M. Siddalingaswamy},
title = {The edge $C_k$ graph of a~graph},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {61--64},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a7/}
}
TY - JOUR AU - P. Siva Kota Reddy AU - K. M. Nagaraja AU - V. M. Siddalingaswamy TI - The edge $C_k$ graph of a~graph JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 61 EP - 64 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a7/ LA - en ID - VMJ_2014_16_4_a7 ER -
P. Siva Kota Reddy; K. M. Nagaraja; V. M. Siddalingaswamy. The edge $C_k$ graph of a~graph. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 61-64. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a7/