The edge $C_k$ graph of a~graph
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 61-64

Voir la notice de l'article provenant de la source Math-Net.Ru

For any integer $k\geq4$, the edge $C_k$ graph $E_k(G)$ of a graph $G=(V,E)$ has all edges of $G$ as it vertices, two vertices in $E_k(G)$ are adjacent if their corresponding edges in $G$ are either incident or belongs to a copy of $C_k$. In this paper, we obtained the characterizations for the edge $C_k$ graph of a graph $G$ to be connected, complete, bipartite etc. It is also proved that the edge $C_4$ graph has no forbidden subgraph characterization. Mereover, the dynamical behavior such as convergence, periodicity, mortality and touching number of $E_k(G)$ are studied.
@article{VMJ_2014_16_4_a7,
     author = {P. Siva Kota Reddy and K. M. Nagaraja and V. M. Siddalingaswamy},
     title = {The edge $C_k$ graph of a~graph},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {61--64},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a7/}
}
TY  - JOUR
AU  - P. Siva Kota Reddy
AU  - K. M. Nagaraja
AU  - V. M. Siddalingaswamy
TI  - The edge $C_k$ graph of a~graph
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 61
EP  - 64
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a7/
LA  - en
ID  - VMJ_2014_16_4_a7
ER  - 
%0 Journal Article
%A P. Siva Kota Reddy
%A K. M. Nagaraja
%A V. M. Siddalingaswamy
%T The edge $C_k$ graph of a~graph
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 61-64
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a7/
%G en
%F VMJ_2014_16_4_a7
P. Siva Kota Reddy; K. M. Nagaraja; V. M. Siddalingaswamy. The edge $C_k$ graph of a~graph. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 61-64. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a7/