A convergence criterion of a~smoothing method for singular integral operators with piecewise continuous coefficients
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 54-60
Voir la notice de l'article provenant de la source Math-Net.Ru
For a complete singular integral operator with piecewise continuous coefficients on the real axis a criterion of convergence of an approximation method by a family of complete singular integral operators with the coefficients being continuous on the one-point compactification of the real axis is obtained.
@article{VMJ_2014_16_4_a6,
author = {V. S. Pilidi},
title = {A convergence criterion of a~smoothing method for singular integral operators with piecewise continuous coefficients},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {54--60},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a6/}
}
TY - JOUR AU - V. S. Pilidi TI - A convergence criterion of a~smoothing method for singular integral operators with piecewise continuous coefficients JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 54 EP - 60 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a6/ LA - ru ID - VMJ_2014_16_4_a6 ER -
%0 Journal Article %A V. S. Pilidi %T A convergence criterion of a~smoothing method for singular integral operators with piecewise continuous coefficients %J Vladikavkazskij matematičeskij žurnal %D 2014 %P 54-60 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a6/ %G ru %F VMJ_2014_16_4_a6
V. S. Pilidi. A convergence criterion of a~smoothing method for singular integral operators with piecewise continuous coefficients. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 54-60. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a6/