Homogeneous polynomials, root mean power, and geometric means in vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 49-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for a homogeneous orthogonally additive polynomial $P$ of degree $s\in\mathbb N$ from a uniformly complete vector lattice $E$ to some convex bornological space the equations $P(\mathfrak S_s(x_1,\ldots,x_N))= P(x_1)+\ldots+P(x_N)$ and $P(\mathfrak G(x_1,\ldots,x_s))=\check P(x_1,\ldots,x_s)$ hold for all positive $x_1,\ldots,x_s\in E$, where $\check P$ is an $s$-linear operator generating $P$, while $\mathfrak S_s(x_1,\ldots,x_N)$ and $\mathfrak G(x_1,\ldots,x_s)$ stand respectively for root mean power and geometric mean in the sense of homogeneous functional calculus.
@article{VMJ_2014_16_4_a5,
     author = {Z. A. Kusraeva},
     title = {Homogeneous polynomials, root mean power, and geometric means in vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {49--53},
     year = {2014},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a5/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Homogeneous polynomials, root mean power, and geometric means in vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 49
EP  - 53
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a5/
LA  - ru
ID  - VMJ_2014_16_4_a5
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Homogeneous polynomials, root mean power, and geometric means in vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 49-53
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a5/
%G ru
%F VMJ_2014_16_4_a5
Z. A. Kusraeva. Homogeneous polynomials, root mean power, and geometric means in vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 49-53. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a5/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, N.Y., 1985, xvi+367 pp. | MR | Zbl

[2] Benyamini Y., Lassalle S., Llavona J. G., “Homogeneous orthogonally additive polynomials on Banach lattices”, Bull. London Math. Soc., 38:3 (2006), 459–469 | DOI | MR | Zbl

[3] Boulabiar K., Buskes G., “Vector lattice powers: $f$-algebras and functional calculus”, Comm. Algebra, 34:4 (2006), 1435–1442 | DOI | MR | Zbl

[4] Bu Q., Buskes G., Kusraev A. G., “Bilinear maps on product of vector lattices: A survey”, Positivity, eds. K. Boulabiar, G. Buskes, A. Triki, Birkhäuser, Basel a.o., 2007, 97–126 | DOI | MR | Zbl

[5] Buskes G., de Pagter B., van Rooij A., “Functional calculus on Riesz spaces”, Indag. Math. (N.S.), 4:2 (1991), 423–436 | DOI | MR | Zbl

[6] Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc., 1991, 395 pp. | MR | Zbl

[7] Kusraeva Z. A., “O predstavleniii ortogonalno additivnykh polinomov”, Sib. mat. zhurn., 52:2 (2011), 315–325 | MR | Zbl