Homogeneous polynomials, root mean power, and geometric means in vector lattices
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 49-53
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for a homogeneous orthogonally additive polynomial $P$ of degree $s\in\mathbb N$ from a uniformly complete vector lattice $E$ to some convex bornological space the equations $P(\mathfrak S_s(x_1,\ldots,x_N))= P(x_1)+\ldots+P(x_N)$ and $P(\mathfrak G(x_1,\ldots,x_s))=\check P(x_1,\ldots,x_s)$ hold for all positive $x_1,\ldots,x_s\in E$, where $\check P$ is an $s$-linear operator generating $P$, while $\mathfrak S_s(x_1,\ldots,x_N)$ and $\mathfrak G(x_1,\ldots,x_s)$ stand respectively for root mean power and geometric mean in the sense of homogeneous functional calculus.
			
            
            
            
          
        
      @article{VMJ_2014_16_4_a5,
     author = {Z. A. Kusraeva},
     title = {Homogeneous polynomials, root mean power, and geometric means in vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {49--53},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a5/}
}
                      
                      
                    TY - JOUR AU - Z. A. Kusraeva TI - Homogeneous polynomials, root mean power, and geometric means in vector lattices JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 49 EP - 53 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a5/ LA - ru ID - VMJ_2014_16_4_a5 ER -
Z. A. Kusraeva. Homogeneous polynomials, root mean power, and geometric means in vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 49-53. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a5/
