Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. II
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 41-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to establish a result on removability of singularities for solutions of the differential inequality with a null Lagrangian. Also, we obtain integral estimates for wedge products of closed differential forms and for minors of a Jacobian matrix.
@article{VMJ_2014_16_4_a4,
     author = {A. A. Egorov},
     title = {Solutions of the differential inequality with a~null {Lagrangian:} higher integrability and removability of {singularities.~II}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {41--48},
     year = {2014},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a4/}
}
TY  - JOUR
AU  - A. A. Egorov
TI  - Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. II
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 41
EP  - 48
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a4/
LA  - en
ID  - VMJ_2014_16_4_a4
ER  - 
%0 Journal Article
%A A. A. Egorov
%T Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. II
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 41-48
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a4/
%G en
%F VMJ_2014_16_4_a4
A. A. Egorov. Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. II. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 41-48. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a4/

[1] Astala K., “Area distortion of quasiconformal mappings”, Acta Math., 173:1 (1994), 37–60 | DOI | MR | Zbl

[2] Astala K., Clop A., Mateu J., Orobitg J., Uriarte-Tuero I., “Distortion of Hausdorff measures and improved Painlevé removability for quasiregular mappings”, Duke Math. J., 141:3 (2008), 539–571 | DOI | MR | Zbl

[3] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton Univ. Press, Princeton, 2009, xvi+677 pp. | MR | Zbl

[4] Sib. Math. J., 33:1 (1992), 159–161 | DOI | MR | Zbl

[5] Sib. Math. J., 34:1 (1993), 55–58 | DOI | MR | Zbl

[6] Dairbekov N. S., Stability of Classes of Mappings, Beltrami Equations, and Quasiregular Mappings of Several Variables, Doctoral dissertation, Novosibirsk, 1995 (Russian)

[7] Egorov A. A., Solutions of the Differential Inequality with a Null Lagrangian: Regularity and Removability of Singularities, 2010, arXiv: 1005.3459

[8] Egorov A. A., “Solutions of the Differential Inequality with a Null Lagrangian: Higher Integrability and Removability of Singularities. I”, Vladikavkaz Math. J., 16:3 (2014), 22–37

[9] Gol'dshtein V. M., Reshetnyak Yu. G., Introduction to the Theory of Functions with Generalized Derivatives, and Quasiconformal Mappings, Nauka, M., 1983, 285 pp. (Russian) | MR

[10] Gol'dshtein V. M., Reshetnyak Yu. G., Quasiconformal Mappings and Sobolev Spaces, Math. and its Appl. Soviet Ser., 54, Kluwer Acad. Publ., Dordrecht etc., 1990, xix+371 pp. | MR

[11] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., The Beltrami Equation. A Geometric Approach, Developments in Math., 26, Springer, Berlin, 2012, xiii+301 pp. | DOI | MR | Zbl

[12] Iwaniec T., “On $L^p$-integrability in PDE's and quasiregular mappings for large exponents”, Ann. Acad. Sci. Fenn. Ser. AI, 7 (1982), 301–322 | MR | Zbl

[13] Iwaniec T., “$p$-Harmonic tensors and quasiregular mappings”, Ann. Math., 136 (1992), 651–685 | DOI | MR

[14] Iwaniec T., Martin G., “Quasiregular mappings in even dimensions”, Acta Math., 170 (1993), 29–81 | DOI | MR | Zbl

[15] Iwaniec T., Martin G., Geometric Function Theory and Non-Linear Analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 | MR

[16] Iwaniec T., Migliaccio L., Nania L., Sbordone C., “Integrability and removability results for quasiregular mappings in high dimensions”, Math. Scand., 75:2 (1994), 263–279 | MR | Zbl

[17] Martio O., Modern Tools in the Theory of Quasiconformal Maps, Textos de Matematica. Serie B, 27, Universidade de Coimbra, Departamento de Matematica, Coimbra, 2000, 43 pp. | MR | Zbl

[18] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer, N.Y., 2009, xii+367 pp. | MR | Zbl

[19] Miklyukov V. M., “Removable singularities of quasi-conformal mappings in space”, Dokl. Akad. Nauk SSSR, 188 (1969), 525–527 (Russian) | MR | Zbl

[20] Pesin I. N., “Metric properties of $Q$-quasiconformal mappings”, Mat. Sb. (N.S.), 40(82):3 (1956), 281–294 (Russian) | MR | Zbl

[21] Math. USSR Sb., 21:2 (1973), 240–254 | DOI | MR | Zbl

[22] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Nauka, Novosibirsk, 1982, 288 pp. (Russian)

[23] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Transl. of Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, 362 pp. | MR | Zbl

[24] Rickman S., Quasiregular Mappings, Results in Math. and Related Areas (3), 26, Springer-Verlag, Berlin, 1993, x+213 pp. | MR | Zbl

[25] Sov. Math. Dokl., 16 (1975), 139–142 | MR | Zbl

[26] Sib. Math. J., 18:1 (1977), 35–50 | DOI | MR | Zbl | Zbl

[27] Russ. Math. Surv., 34:1 (1979), 19–74 | DOI | MR | Zbl | Zbl

[28] Vuorinen M., Conformal Geometry and Quasiregular Mappings, Lect. Notes Math., 1319, Springer-Verlag, Berlin etc., 1988, xix+209 pp. | MR | Zbl

[29] Math. USSR Sb., 10:4 (1970), 581–583 | DOI | MR | Zbl | Zbl