On a solution operator for differential equations of infinity order on convex sets
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 27-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $Q$ be a convex (not necessarily bounded) set in $\mathbb C$ with the nonempty interior which has a countable neighborhood base of convex domains; $A(Q)$ be the space of germs of all analytic functions on $Q$ with its natural inductive limit topology. Necessary and sufficient conditions under which a fixed nonzero differential operator of infinite order with constant coefficients which acts in $A(Q)$ has a continuous linear right inverse are established. This criterion is obtained in terms of the existence of a special family of subharmonic functions.
@article{VMJ_2014_16_4_a3,
     author = {U. V. Barkina and S. N. Melikhov},
     title = {On a~solution operator for differential equations of infinity order on convex sets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {27--40},
     year = {2014},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/}
}
TY  - JOUR
AU  - U. V. Barkina
AU  - S. N. Melikhov
TI  - On a solution operator for differential equations of infinity order on convex sets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 27
EP  - 40
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/
LA  - ru
ID  - VMJ_2014_16_4_a3
ER  - 
%0 Journal Article
%A U. V. Barkina
%A S. N. Melikhov
%T On a solution operator for differential equations of infinity order on convex sets
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 27-40
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/
%G ru
%F VMJ_2014_16_4_a3
U. V. Barkina; S. N. Melikhov. On a solution operator for differential equations of infinity order on convex sets. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 27-40. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[2] Korobeinik Yu. F., “O resheniyakh nekotorykh funktsionalnykh uravnenii v klassakh funktsii, analiticheskikh v vypuklykh oblastyakh”, Mat. sb., 75(117):2 (1968), 225–234 | MR | Zbl

[3] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Uspekhi mat. nauk, 36:1 (1981), 73–126 | MR | Zbl

[4] Korobeinik Yu. F., “O schetnoi opredelimosti mnozhestv”, Mat. zametki, 59:3 (1996), 382–395 | DOI | MR | Zbl

[5] Korobeinik Yu. F., “O pravom obratnom dlya operatora svertki v prostranstvakh rostkov na svyaznykh mnozhestvakh v $\mathbb C$”, Mat. sb., 187:1 (1996), 55–82 | DOI | MR | Zbl

[6] Krasichkov-Ternovskii I. F., “Odna geometricheskaya lemma, poleznaya v teorii tselykh funktsii, i teoremy tipa Levinsona”, Mat. zametki, 24:4 (1978), 531–546 | MR | Zbl

[7] Melikhov S. N., “Vypuklye konformnye otobrazheniya i pravye obratnye k operatoru predstavleniya ryadami eksponent”, Materialy mezhdunar. nauch. konf. (Kazan, 18–24 marta 2002 g.), Tr. Matematicheskogo tsentra imeni N. I. Lobachevskogo, 14, Kazanskoe mat. obschestvo, Kazan, 2002, 213–227 | MR | Zbl

[8] Melikhov S. N., “Analiticheskie resheniya differentsialnykh uravennii beskonechnogo poryadka na vypuklykh mnozhestvakh s prepyatstviem, otkrytym na granitse”, Issledovaniya po kompleksnomu analizu, teorii operatorov i mat. modelirovaniyu, Izd-vo VNTs RAN, Vladikavkaz, 2004, 141–162

[9] Melikhov S. N., Momm Z., “O lineinom nepreryvnom pravom obratnom dlya operatora svertki na prostranstvakh rostkov analiticheskikh funktsii na vypuklykh kompaktakh v $\mathbb C$”, Izv. vuzov. Matematika, 1997, no. 5, 38–48 | MR | Zbl

[10] Palamodov V. P., “Funktor proektivnogo predela v kategorii lineinykh topologicheskikh prostranstv”, Mat. sb., 75(117):4 (1968), 567–603 | MR | Zbl

[11] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971, 360 pp. | MR

[12] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[13] Bonet J., Meise R., Melikhov S. N., “The Dual of the Space of Holomorphic Functions on Locally Closed Sets”, Publ. Mat., 49 (2005), 487–509 | DOI | MR | Zbl

[14] Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981 | MR | Zbl

[15] Langenbruch M., “Continuous linear right inverses for convolution operators in spaces of real analytic functions”, Studia Math., 110 (1994), 65–82 | MR | Zbl

[16] Martineau A., “Sur la topologie des espaces de fonctions holomorphes”, Math. Annal., 163 (1966), 62–88 | DOI | MR | Zbl

[17] Meise R., “Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals”, J. Reine und Angew. Math., 363 (1985), 59–95 | MR | Zbl

[18] Meise R., Vogt D., Einführung in die Funktionalanalysis, Vieweg, Braunschweig–Wiesbaden, 1992, 418 pp. | MR | Zbl

[19] Melikhov S. N., Momm S., “Solutions operators for convoluion equations on the germs of analytic functions on compact convex sets of $\mathbb C^N$”, Stud. Math., 117 (1995), 79–99 | MR | Zbl

[20] Melikhov S. N., Momm S., “Analytic solutions of convolution equations on convex sets with obstacle in the boundary”, Math. Scand., 86 (2000), 293–319 | MR | Zbl

[21] Momm S., “Convex univalent functions and continuous linear right inverses”, J. Functional Analysis, 103 (1992), 85–103 | DOI | MR | Zbl

[22] Momm S., “Convolution equations on the analytic functions on convex domains in the plane”, Bull. Sci. Math., 118 (1994), 259–270 | MR | Zbl

[23] Taylor B. A., “On weighted polynomial approximation of entire functions”, Pac. J. Math., 29 (1971), 523–539 | DOI | MR

[24] Vogt D., Lectures on projective spectra of (DF)-spaces, Seminar lectures. AG Funktionalanalysis, Wuppertal, Düsseldorf, 1987, 36 pp.

[25] Vogt D., “Topics on projective spectra of (LB)-spaces”, Advances in the theory of Fréchet spaces (Istambul, 1987), NATO ASI Series C, 287, ed. T. Terzioǧlu, Kluwer, Dordrecht, 1989, 11–27 | MR

[26] Wengenroth J., “Acyclic inductive spectra of Fréchet spaces”, Stud. Math., 120 (1996), 247–258 | MR | Zbl