On a~solution operator for differential equations of infinity order on convex sets
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 27-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q$ be a convex (not necessarily bounded) set in $\mathbb C$ with the nonempty interior which has a countable neighborhood base of convex domains; $A(Q)$ be the space of germs of all analytic functions on $Q$ with its natural inductive limit topology. Necessary and sufficient conditions under which a fixed nonzero differential operator of infinite order with constant coefficients which acts in $A(Q)$ has a continuous linear right inverse are established. This criterion is obtained in terms of the existence of a special family of subharmonic functions.
@article{VMJ_2014_16_4_a3,
     author = {U. V. Barkina and S. N. Melikhov},
     title = {On a~solution operator for differential equations of infinity order on convex sets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/}
}
TY  - JOUR
AU  - U. V. Barkina
AU  - S. N. Melikhov
TI  - On a~solution operator for differential equations of infinity order on convex sets
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 27
EP  - 40
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/
LA  - ru
ID  - VMJ_2014_16_4_a3
ER  - 
%0 Journal Article
%A U. V. Barkina
%A S. N. Melikhov
%T On a~solution operator for differential equations of infinity order on convex sets
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 27-40
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/
%G ru
%F VMJ_2014_16_4_a3
U. V. Barkina; S. N. Melikhov. On a~solution operator for differential equations of infinity order on convex sets. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 27-40. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/