On a~solution operator for differential equations of infinity order on convex sets
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 27-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $Q$ be a convex (not necessarily bounded) set in $\mathbb C$ with the nonempty interior which has a countable neighborhood base of convex domains; $A(Q)$ be the space of germs of all analytic functions on $Q$ with its natural inductive limit topology. Necessary and sufficient conditions under which a fixed nonzero differential operator of infinite order with constant coefficients which acts in $A(Q)$ has a continuous linear right inverse are established. This criterion is obtained in terms of the existence of a special family of subharmonic functions.
			
            
            
            
          
        
      @article{VMJ_2014_16_4_a3,
     author = {U. V. Barkina and S. N. Melikhov},
     title = {On a~solution operator for differential equations of infinity order on convex sets},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/}
}
                      
                      
                    TY - JOUR AU - U. V. Barkina AU - S. N. Melikhov TI - On a~solution operator for differential equations of infinity order on convex sets JO - Vladikavkazskij matematičeskij žurnal PY - 2014 SP - 27 EP - 40 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/ LA - ru ID - VMJ_2014_16_4_a3 ER -
U. V. Barkina; S. N. Melikhov. On a~solution operator for differential equations of infinity order on convex sets. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 4, pp. 27-40. http://geodesic.mathdoc.fr/item/VMJ_2014_16_4_a3/
