On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation
Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 55-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate a Goursat problem associated with a controlled fourth order semilinear equation of the pseudoparabolic type having various applications. Under some hypotheses we prove the total (with respect to the set of admissible controls) preservation of global solvability for the considered problem.
@article{VMJ_2014_16_3_a5,
     author = {A. V. Chernov},
     title = {On total preservation of global solvability for {a~Goursat} problem associated with a~controlled semilinear pseudoparabolic equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {55--63},
     year = {2014},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a5/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2014
SP  - 55
EP  - 63
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a5/
LA  - ru
ID  - VMJ_2014_16_3_a5
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation
%J Vladikavkazskij matematičeskij žurnal
%D 2014
%P 55-63
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a5/
%G ru
%F VMJ_2014_16_3_a5
A. V. Chernov. On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation. Vladikavkazskij matematičeskij žurnal, Tome 16 (2014) no. 3, pp. 55-63. http://geodesic.mathdoc.fr/item/VMJ_2014_16_3_a5/

[1] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR

[2] Mamedov I. G., “Formula integrirovaniya po chastyam neklassicheskogo tipa pri issledovanii zadachi Gursa dlya odnogo psevdoparabolicheskogo uravneniya”, Vladikavk. mat. zhurn., 13:4 (2011), 40–51 | MR

[3] Potapov D. K., “Zadachi upravleniya dlya uravnenii so spektralnym parametrom i razryvnym operatorom pri nalichii vozmuschenii”, Zhurn. Sibirskogo federalnogo un-ta. Ser. Matematika i fizika, 5:2 (2012), 239–245

[4] Potapov D. K., “Optimalnoe upravlenie raspredelennymi sistemami ellipticheskogo tipa vysokogo poryadka so spektralnym parametrom i razryvnoi nelineinostyu”, Izv. RAN. TiSU, 2013, no. 2, 19–24 | MR | Zbl

[5] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Dif. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[6] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[7] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[8] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 3, 62–73 | MR | Zbl

[9] Chernov A. V., “Ob odnom obobschenii metoda monotonnykh operatorov”, Dif. uravneniya, 49:4 (2013), 535–544 | MR | Zbl